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I. Introduction 
 

A recent survey by Brookshire, et. al., (2006) suggests that forensic econo-
mists are mixed in their use of current versus historical data to estimate future 
net discount rates.1 Typically the choice is between a long-term average or sim-
ply the current prevailing rate.2 Cushing and Rosenbaum (2006) proposed an 
estimator that optimally uses the information in the past behavior of net dis-
count rates to forecast future rates. Their optimal estimator is a weighted av-
erage of the current and long-term mean net discount rates with weights that 
depend on the degree of persistence in the net discount rate process and on the 
horizon over which one wishes to forecast future rates. Noting the practical 
impediments to calculating such an estimator, they proposed an alternate 
compromise estimator that equally weights the current net discount rate with 
a long-term average net discount rate. 

In this paper we extend that analysis by developing confidence intervals 
for the current, long-term average, optimal and compromise estimators. In par-
ticular, we develop both analytic and bootstrap estimates of 50% confidence 
intervals for all four estimators. The 50% boundary demarcates values that are 
more likely than not to occur. This serves two purposes. One is to shed light on 
error rates as is called for in Daubert (1993). The other is to help establish a 
reasonable degree of economic certainty in our net discount rate predictions. 

Results show that the boundaries vary by estimator and by forecast hori-
zon. However, in almost all cases, the boundaries are within two percentage 
points of the point estimates. These boundaries generally narrow as the hori-
zon increases. For the optimal and compromise estimators, the boundaries ap-
proach the point estimate plus or minus about one percentage point for a 20-
year horizon and beyond. Additional results show that the boundaries have 
remained quite stable over time, regardless of the estimator. Combining these 
results with earlier findings, the best range of predictions for the future net 
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discount rate may be an equal weighting of the current rate and the long-term 
average, plus or minus one or two percentage points. 

In section II, we develop a method to derive the confidence intervals. Sec-
tion III discusses data and presents results. It is followed by a conclusion in 
section IV. 
 

II. The Model 
 

In order to proceed formally, we first must be precise about what we mean 
by “future net discount rates.” Forensic economic settings typically require a 
single value that summarizes the future course of net discount rates. The value 
is presumably some average of net discount rates that might be expected to 
prevail over the relevant forecast horizon. We therefore define the Future Net 
Discount Rate, FNDR¸ as a geometrically declining weighted average of future 
net discount rates over a horizon of m periods,  
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In equation (1), FNDRt,m is the period t forecast of the future net discount rate 
projected out m years and ndrt+1+j is the net discount rate in period t+1+j. The 
parameter γ governs the decay in the weighting scheme. For γ close to unity, 
future net discount rates are given equal weights.3 For values of γ less than 
one, closer observations receive more weight than distant observations. As γ 
approaches zero, the weights become concentrated on the closest observation.4 
By analogy to the term structure of interest rates literature (see Shiller, 1979) 
we suggest choosing γ 1/(1 ndr)= +  where ndr is the long-run mean of the net 
discount rate process. In any case, our results are relatively insensitive to the 
choice of γ in the neighborhood of unity.  

We consider a class of net discount rate estimators that take the form, 
 
(2) t tPNDR θndr (1 θ )µ= + −  
 
where tPNDR is the period t prediction of the net discount rate, θ is the weight 
attached to the current observation and (1-θ) is the weight attached to the un-
conditional mean of the net discount rate series, µ. With respect to the four 
specific estimators, the long-term average estimator takes θ = 0, the unit root 
estimator takes θ = 1, the “compromise” estimator takes θ = .5 and the optimal 
estimator selects θ to minimize a mean squared prediction error.5 

                                                      
3Formally, the weight on jth term in equation (1) is j
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the limit as the parameter γ approaches unity, 
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corresponds to an equally weighted average.  
4Formally, the value of the expression in equation (1) as γ approaches zero depends on the 
indeterminate form, 00. However, if we adopt the common convention of defining 00 as unity, the 
statement in the text is exact. 
5For a discussion on deriving the optimal θ, see Cushing and Rosenbaum (2006). 
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The four estimators can each be viewed as weighted averages of the his-
torical data. The long-term average places equal weight on all historical values 
whereas the random walk estimator places all weight on the current value. 
The compromise estimator, being an equal weighting of the random walk and 
long-term average places half of its weight on the current value and the rest 
equally on all of the previous observations. The optimal estimator is also a 
weighted average of the random walk and long-term average estimators, but 
the weights are determined by the time-series properties of the net discount 
rate.  

Cushing and Rosenbaum (2006) evaluated the performance of the four es-
timators. They showed that from a theoretical standpoint, the optimal estima-
tor was more efficient than either the long-term average or the current net dis-
count rate. Benchmark estimates suggested that the forecast error variance 
using the optimal estimator was less than half that of the long-term average or 
current net discount rate. Examples from historical U.S. data and from recent 
international data showed that the optimal estimator would have performed 
better than either of the extreme alternatives. 

In their previous paper, Cushing and Rosenbaum (2006) also suggested 
that calculating and justifying the particular weighting formula in the optimal 
estimator might be problematic in a forensic setting. Therefore, they also con-
sidered a compromise estimator that equally weighted the current and long-
term average net discount rates. The form of the optimal estimator and the 
time-series properties of net discount rates suggested that this compromise 
estimator was likely to be reasonably close to the efficient solution. Empirical 
examples showed that the compromise estimator performed well, significantly 
outperforming both the long-term average and the current value. They also 
noted that while the compromise estimator should be asymptotically less effi-
cient than the optimal estimator, it had the advantage of simplicity and re-
flected the essential concept of the optimal estimator: a blending of the two ex-
treme estimators. Further, the theoretical considerations developed in that 
paper suggested that an equally weighted average may be close to optimal. 

In this paper we extend their analysis by developing 50% confidence inter-
vals for each of the estimators. Assuming normality, analytic confidence inter-
vals for each of the estimators can be computed from: 
 
(3) 2

t t.25 tPNDR z E( PNDR PNDR )± − . 
 
From a sample of annual historical net discount rates it is possible to calculate 
the net discount rate in each year, as well as each of the four estimators. Sam-
ple variances can then be calculated and used to determine the z statistic for a 
50% confidence interval. 

Standard criteria (Akaike, Hannan-Quinn, and Schwartz) suggest that the 
data follow a first order autoregressive process.6 We thus assume ndrt follows a 
stationary first-order autoregressive process with AR parameter, ρ: 
 
                                                      
6See Greene (2003), chapter 19. 



4 JOURNAL OF FORENSIC ECONOMICS 

(4) t t 1 tndr α ρndr e .−= + +  
 
With this process for net discount rates, the mean squared prediction error of 
the estimators can be shown to be:7 
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The optimal estimator chooses θ to minimize the above. The optimal choice 

for θ is:  
 

(6) 
*

m

m
ρ(1 γ )(1 ( γρ ) )

θ
(1 γρ )(1 γ )

.− −
=

− −
 

 
The analytic confidence intervals calculated from (3) and (5) suffer from two 
shortcomings. First, the expression for the mean squared prediction error, (5), 
assumes the parameters governing the net discount rate process, ρ and α are 
known with certainty. The prediction intervals do not account for parameter 
uncertainty. Second, the confidence intervals assume the underling distur-
bances in (4) are normally distributed. We can avoid both of these questionable 
assumptions by employing a bootstrap method to estimate confidence inter-
vals.8  

To apply the bootstrap, we estimate equation (4) to obtain estimates of the 
parameters of the net discount rate process, α̂  and ρ̂ , and the residuals from 
the regression. Then we simulate an artificial net discount rate series of length 
n+m using the initial historic value, the estimated parameters and error terms 
drawn, with replacement, from the sample of residuals. The four net discount 
rate estimators specified in formula (2) above are then computed from the first 
n observations and the objective function in equation (1) is estimated from the 
remaining m terms.9 The difference between each estimate and the computed 
objective function is then saved to develop an error. This procedure is repeated 
5,000 times, yielding the sampling error distributions for each of the estima-
tors. Bounds are then computed from each of the four sampling distributions 
by removing the top and bottom 25% of observations from each sampling error 
distribution. This gives us the 50% confidence intervals. 

                                                      
7For a derivation of equation (5), see the Appendix. 
8For a more complete description of the bootstrap method, see Efron and Tibshirani (1993). 
9We use a value of γ equal to 0.98. 
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Table 1 
Analytic 50% Confidence Bounds 

 
Horizon 

(m) 
Long-Term 

Average 
Random Walk 

Estimator 
Compromise 

Estimator 
Optimal 

Estimator 

 
Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

1 -2.074 +2.074 -1.994 +1.994 -1.750 +1.750 -1.748 +1.748 
5 -1.427 +1.427 -2.094 +2.094 -1.461 +1.461 -1.347 +1.347 

10 -1.104 +1.104 -2.110 +2.110 -1.326 +1.326 -1.073 +1.073 
20 -0.818 +0.818 -2.093 +2.093 -1.204 +1.204 -0.805 +0.805 
35 -0.637 +0.637 -2.079 +2.079 -1.135 +1.135 -0.630 +0.630 
50 -0.546 +0.546 -2.072 +2.072 -1.105 +1.105 -0.541 +0.541 

 
 
 

III. Data and Results 
 
Data 
 

The net discount rate is defined as ndrt =it – gt, where it is the one-year 
U.S. treasury bill rate and gt is the annual growth rate of average weekly 
earnings of production workers.10 Data on these variables are available from 
1966 to 2006.  
 
Analytic Confidence Boundaries 

 
Equations are used to develop the analytic confidence intervals for each of 

the four net discount rate estimators. The boundaries are shown in Table 1. 
The upper and lower boundaries in all cases are symmetric as we assume a 
normal distribution in calculating the z statistic. Table 1 shows that with a 
one-year horizon, for example, the confidence interval on the long-term average 
estimator is the long-term average plus or minus 2.074 percentage points. In 
2006 the long-term average net discount rate was 2.192%.11 Therefore, the 
confidence interval contains net discount rates from 0.118% to 4.266%. The 
other three estimators have slightly smaller one-year horizon confidence 
boundaries. 

For all but the random walk estimator, as the horizon gets longer, the con-
fidence interval narrows. With a 20-year horizon, boundaries for the long-term 
average and optimal estimator shrink to the current estimate plus or minus 
about eight-tenths of one percentage point. The compromise estimator has an 
interval of plus or minus 1.2 percentage points. With a 50-year horizon, the 
confidence intervals on these three estimators shrink to either one-half or one 
percentage point, depending on the estimator. In contrast, the random walk 

                                                      
10Defining the net discount rate as (1+i)/(1+g) – 1 yields very similar conclusions. The one-year 
treasury bill rate is taken to be the rate reported in January of each year. The growth rate of 
earning is measured as a January to next January growth rate. 
11The long-term average is taken over the entire sample, the years 1966 through 2006. 
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estimator keeps its boundaries of about two percentage points with almost any 
horizon.  

In their previous paper, Cushing and Rosenbaum (2006) argued that the 
compromise estimator was a reasonable predictor of the future net discount 
rate. The compromise estimator equally weighted the current and long-term 
average net discount rates. The form of the optimal estimator and the time-
series properties of net discount rates suggested that this compromise estima-
tor was likely to be reasonably close to the efficient solution. Empirical exam-
ples showed that the compromise estimator performed well, significantly out-
performing both the long-term average and the current value. They concluded 
that this compromise estimator provided a simple, transparent method for 
predicting future net discount rates. 

In 2006, the compromise estimator took a value of 2.046. Looking at the 
boundaries in Table 1, over a 10-year horizon, net discounts would lie in the 
range 0.72 to 3.37. Over a 20-year horizon, they lie in a range of 0.84 to 3.25. 
Over 35- and 50-year horizons, the ranges narrow to 0.91-3.18 and 0.94-3.15, 
respectively. 

 
Bootstrap Confidence Boundaries 

 
The process of calculating the bootstrap intervals begins with using ob-

served net discount rates to estimate equation (4) above. The results are shown 
in equation (7) with standard errors for the coefficient estimates shown in pa-
rentheses. Both coefficients are statistically significant at the 95% confidence 
level. The equation had a standard error of 2.59, an R2 of 0.292 and a Durbin-
Watson statistic of 2.135 suggesting that the first order autocorrelation model 
fits fairly well. 
 

(7) t t 1 tndr 1.032 .538 ndr e
(.497) ( .134)

−= + +
 

 
The estimates of α and ρ in equation (7) are then used to create net dis-

count rate estimates over the horizon m. These are used to calculate distribu-
tions as described in “The Model” section above. The resulting confidence in-
terval boundaries are shown in Table 2. The boundaries are not symmetric 
since they were developed by dropping the top and bottom 25% of observed 
values, rather than by assuming a symmetric underlying distribution. 

With a one-year horizon, the confidence interval on the long-term average 
estimator is the current value of the long-term average minus 1.613 or plus 
1.918 percentage points. The confidence interval would contain net discount 
rates from 0.579% to 4.110%. The random walk estimator has slightly smaller 
one-year horizon confidence boundaries. The compromise and optimal estima-
tors have appreciably narrower boundaries. 
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Table 2 
Bootstrap 50% Confidence Bounds 

 
Horizon 

(m) 
Long-Term 

Average 
Random Walk 

Estimator 
Compromise 

Estimator 
Optimal 

Estimator 

 
Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

1 -1.613 1.918 -1.505 1.729 -1.078 1.477 -1.105 1.518 
5 -1.392 1.442 -1.972 1.895 -1.421 1.457 -1.327 1.375 

10 -1.167 1.243 -2.055 1.877 -1.389 1.326 -1.157 1.178 
20 -0.931 0.963 -1.950 1.767 -1.194 1.190 -0.906 0.933 
35 -0.813 0.824 -1.948 1.765 -1.165 1.106 -0.805 0.819 
50 -0.748 0.759 -1.953 1.709 -1.107 1.046 -0.734 0.754 

 
 
 

Table 3 
Bootstrap Relative to Analytic Intervals 

 
Horizon 

(m) 
Long-Term 

Average 
Random Walk 

Estimator 
Compromise 

Estimator 
Optimal 

Estimator 

 
Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

1 78% 92% 75% 87% 62% 84% 63% 87% 
5 98% 101% 94% 90% 97% 100% 99% 102% 

10 106% 113% 97% 89% 105% 100% 108% 110% 
20 114% 118% 93% 84% 99% 99% 113% 116% 
35 128% 129% 94% 85% 103% 97% 128% 130% 
50 137% 139% 94% 82% 100% 95% 136% 139% 

 
 
 
For the long-term average estimator, as the horizon gets longer, the confi-

dence interval consistently narrows. With a 20-year horizon, its boundaries are 
about two-thirds those with a one-year horizon. Over a 50-year horizon, the 
long-term average estimator’s boundaries are less than half the one-year hori-
zon boundaries. The other estimators have boundaries that increase with a 5-
year horizon and generally decrease after that.12 The 50-year horizon bounda-
ries are narrowest for the optimal estimator, followed closely by the long-term 
average estimator. 

Using the compromise estimator and looking at the boundaries in Table 2, 
over a 10-year horizon, net discounts would lie in the range 0.65 to 3.37. Over a 
20-year horizon, they lie in a range of 0.85 to 3.24. Over 35- and 50-year hori-
zons, the ranges narrow to 0.88-3.15 and 0.94-3.09, respectively. 

Table 3 compares the bootstrap intervals to the analytic intervals. For the 
one-year horizon, the bootstrap intervals are from 62% to 92% of the analytic 
intervals. For all four estimators, the divergence narrows toward one and then 
                                                      
12Only the lower bound of the random walk estimator increases from a 5-year to 10-year horizon. 
That increase is minimal. 
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widens as the forecast horizon increases. This widening is more pronounced for 
the long-term average and optimal estimators. For the compromise estimator, 
the analytic and bootstrap boundaries are very near one another for almost all 
horizons. 
 
Stability of Boundaries over Time 
 

The boundaries in Tables 1 and 2 were calculated used historical data from 
the years 1966 through 2006 to calculate either variances for the analytic 
method or the estimators and objective functions for the bootstrap method. 
This raises the natural question of how the boundaries might vary if the sam-
ple period changed for the observed data.  

Figure 1 shows how the 10-year horizon confidence intervals vary for the 
four estimators when the end period for the sample period moves from 1984 to 
2005. The upper left hand panel shows 10-year horizon upper and lower confi-
dence bounds for the long-term average estimator. Moving clockwise, the other 
panels show bounds for the random walk, optimal and compromise estimators. 
The solid lines represent the bounds for the bootstrap method. The dashed 
lines represent the bounds for the analytic method. Observation shows that the 
bounds remain reasonably stable for all four estimators. If anything, they have 
a tendency to narrow slightly over time. The long-term, optimal and compro-
mise estimators all have bounds of plus or minus about one percentage point. 
The random walk estimator maintains bounds of plus or minus two percentage 
points. 

 
Impact on Awards 
 

Although confidence intervals on estimates of the net discount rate are in-
teresting in and of themselves, it is also interesting to see how uncertainty 
translates into the present discounted value of losses. For simplicity, suppose 
there is a loss of $1,000,000 spread evenly over m years. For example, if the 
loss is to be spread over five years, then the recipient would receive $200,000 
annually. The present discounted value of the payments can then be calculated 
using the appropriate bootstrap bounds for each of the four estimators. These 
results are shown in Table 4. 

The first row in Table 4 shows the present discounted value of $200,000 
per year paid over five years. The first column for each estimator shows the 
award when it is discounted at the lowest net discount rate in the 50% confi-
dence interval. The second column for each estimator shows the award when it 
is discounted at the highest net discount rate in the 50% confidence interval. 

With a 5-year horizon, the ranges between the boundaries are not too 
large, $75,000 to $105,000 depending on the estimator. Looking down the col-
umns of Table 4, as the horizon increases, the ranges increase as well. How-
ever, the variation between estimators becomes more significant. With a 50-
year horizon, for example, the range of values for the long-term estimator is 
about $200,000. For the random walk estimator, the range is more than 
$500,000. 
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Figure 1 
Variation in Confidence Boundaries  

 
 
 

Table 4 
Bootstrap 50% Confidence Bounds on $1,000,000 Award Paid over m Years 

 
Horizon 

(m) 
Long-term 
Average 

Random Walk 
Estimator 

Compromise 
Estimator 

Optimal 
Estimator 

 

Smallest 
Net 

Discount 
Rate 

Largest 
Net 

Discount 
Rate 

Smallest 
Net 

Discount 
Rate 

Largest 
Net 

Discount 
Rate 

Smallest 
Net 

Discount 
Rate 

Largest 
Net 

Discount 
Rate 

Smallest 
Net 

Discount 
Rate 

Largest 
Net 

Discount 
Rate 

5 $984,936  $907,063  $1,002,161 $895,513  $981,520  $902,934  $975,141  $901,810  
10 $960,834  $846,824  $1,008,573 $820,165  $964,795  $837,052  $946,369  $837,984  
20 $905,091  $753,377  $1,005,259 $699,995  $915,866  $727,899  $878,565  $736,703  
35 $828,062  $639,412  $1,008,673 $558,394  $857,302  $600,520  $790,563  $614,728  
50 $756,933  $549,635  $1,013,614 $460,023  $795,131  $505,726  $709,679  $521,905  
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IV. Conclusion 
 

Forensic economists typically base their estimates of future net discount 
rates on the past behavior of the series, using either a long-term average of 
past rates or simply the current rate as a predictor of future net discount rates. 
This paper provides analytic and bootstrap 50% confidence intervals for these 
estimators. In addition we provide confidence intervals for the optimal and 
compromise estimators derived in an earlier paper.13 The boundaries for the 
optimal and compromise estimators are almost always within two percentage 
points of the estimators, and frequently within one percentage point. In addi-
tion, these boundaries have been very stable over time. Combining results from 
this paper with previous results, a reasonable confidence interval for the net 
discount rate when losses occur over at least a 10-year horizon would be the 
compromise estimator plus or minus 1.3 percentage points. In early 2007, that 
range would be 0.75% to 3.35%. 

These confidence intervals may appear surprisingly wide, especially to the 
applied researcher accustomed to treating the future net discount rate as a 
known quantity. The time-series behavior of net discount rates indicates that 
error rates in estimating future values cannot be ignored. These confidence 
intervals apply to estimates based solely on the past behavior of the series. Al-
ternative approaches to estimating future net discount rates, which may in-
clude additional variables, the use of economic theory, “market forecasts” and 
“expert opinion,” could yield more precise estimates. Whether these alternative 
approaches result in substantially better estimates and hence narrower confi-
dence intervals is the subject of future research.  
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Appendix 

 
From text equation (4), we have: 
 
(A.1) t t 1 tndr α ρndr e−= + +  
 

with E(et) = 0 and Var(et) = 2
eσ , and E( tndr ) = α µ

1 ρ
=

−
. Define t tndr ndr µ= − . Then, 

 

(A.2) 
k

2
t t k e2

ρE( ndr ,ndr ) σ
1 ρ

− =
−

. 

 
Using tPNDR  as defined in text equation (2), 
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(A.3) 

[ ]
[ ]

22
tt t t

2
t t

2
m 1 j

t 1 j tm j 0

E[ PNDR PNDR ] E PNDR (θndr (1 θ )µ)

E ( PNDR µ) θ(ndr µ)

1 γE γ ndr θndr
1 γ

−
+ +

=

− = − + − =

− − − =

⎡ ⎤⎛ ⎞−
−∑⎢ ⎥⎜ ⎟

−⎢ ⎥⎝ ⎠⎣ ⎦

 

 
which, after squaring the terms, equals 
 

(A.4) 

2 2m 1 m 1j j
t 1 j t t 1 jm mj 0 j 0

22
t

1 γ 2θ(1 γ )E γ ndr E ndr γ ndr
1 γ 1 γ

θ E ndr .

− −
+ + + +

= =

⎛ ⎞− −⎡ ⎤ ⎡ ⎤
−∑ ∑⎜ ⎟ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎝ ⎠

⎡ ⎤+ ⎣ ⎦

 

 
Focusing on the first term in (A,4), it can be rewritten as: 
 

(A.5) 

2 2 m 1 m 1 j hj he
m 2 2 j 0 h 0

2 2 j 1 jm 1 m 1 m 1 m 1j h j h j hj h j h j he
m 2 2 j 0 h 0 j 0 h j j 0 h j 1

(1 γ ) σ γ ρ
(1 γ ) (1 ρ )

(1 γ ) σ γ ρ γ ρ γ ρ .
(1 γ ) (1 ρ )

− − −+

= =

−− − − −− − −+ + +

= = = = = = +

− ⎡ ⎤
=∑ ∑⎢ ⎥− − ⎣ ⎦

− ⎡ ⎤
+ +∑ ∑ ∑ ∑ ∑ ∑⎢ ⎥− − ⎣ ⎦

 

 
Noting that in (A.5), the first and third double sums are equal, (A.5) becomes 
 

(A.6) 
2 2 m 1 m 1 j h2 j j he

m 2 2 j 0 h j 1

(1 γ ) σ γ 2 γ ρ
(1 γ ) (1 ρ )

− − −+

= = +

⎡ ⎤− ⎛ ⎞
+∑ ∑⎢ ⎥⎜ ⎟− − ⎝ ⎠⎣ ⎦

. 

 
Substituting k for h-j, (A.6) becomes 
 

(A.7) 
m 1 jm 1 k2 j 2 j k

j 0 k 1
Ω γ 2 γ ρ

− −− +

= =

⎡ ⎤⎛ ⎞+∑ ∑⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, 

 

where 
2 2

e
m 2 2

(1 γ ) σΩ
(1 γ ) (1 ρ )

−
=

− −
. Now, (A.7) can be expressed as 

 

(A.8) 

( )

m 1 jm 1 k2 j k

j 0 k 1

m 1 jm 1 2 j k

j 0 k 0

m jm 1 2 j

j 0

2m m mm 1 j
2 j 0

Ω γ 1 2 γ ρ

Ω γ 2 ( γρ ) 1

1 ( γρ )Ω γ 2 1
1 γρ

(1 γρ )(1 γ ) 2γ ρΩ γ/ ρ .
1 γρ(1 γρ )(1 γ )

− −−

= =

− −−

= =

−−

=

−

=

⎡ ⎤⎛ ⎞⎛ ⎞+ =∑ ∑⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞− =∑ ∑⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞−
− =⎢ ⎥⎜ ⎟∑ ⎜ ⎟⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤+ −
− ∑⎢ ⎥

−− −⎣ ⎦

 
 
Carrying out the summation and substituting back for Ω provides: 
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(A.9) ( ) ( ) ( )2m2 2 m m m
e

m 2 2

1 γρ 1 γ1 γ σ 2γ ρ 1 ( γ/ ρ)
1 γρ (1 γ/ ρ)(1 γ )(1 ρ ) (1 γρ)(1 γ )

⎡ ⎤⎡ ⎤ + − ⎛ ⎞− −⎢ ⎥⎢ ⎥ − ⎜ ⎟⎜ ⎟⎢ ⎥− −− − − −⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦
. 

 
This is the last term in text equation (5). 

Now turn to the second term in (A.4). Recalling (A.2), this term becomes: 
 

(A.10) 

( ) ( )

j j 1m 1 2
em 2j 0

2 m 1 je
m 2 j 0

2θ(1 γ ) γ ρ σ
1 γ 1 ρ
2θ(1 γ )ρσ ( γρ ) ,

1 γ 1 ρ

+−

=

−

=

− −
=∑

− −

− −
∑

− −

 

 
or 
 

(A.11) 
( ) ( ) ( )

m
2
e 2 m

2ρ(1 γ )(1 ( γρ ) )σ θ
1 γρ 1 ρ 1 γ
− − −

− − −
, 

 
which is the middle term in text equation (5). Finally, using (A.2), the last term in (A.4) 
becomes: 
 

(A.12) 
2 2

e
2

θ σ
1 ρ−

. 


