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Abstract

We study nonlinearities in the relationship between Tobin’s q and firm investment.

To capture different elasticities of investment across firms, we augment the classic

model of Fazzari, Hubbard, and Petersen (1988) with higher-order terms in q. After

correcting for linear and nonlinear measurement errors in q terms, we find evidence

of heterogeneity in investment sensitivity. Our estimates reveal that the elasticity of

investment is little for firms with low q, and it also starts to decrease for firms with

q beyond some intermediate value. In other words, the cross-sectional investment-q

relation is first non-decreasing over the support of q, but it then becomes non-increasing

for high values of q, resulting in investments clustered around similar levels at both

ends of q. This implies that the investment-q relation is not thoroughly linear in the

cross section and that a satisfactory increase in investment is unlikely to be achieved

by firms with low and high q even if there is a positive change in q.
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1. Introduction

After Hayashi (1982) formalized that the neoclassical theory of investment originated

by Jorgenson (1963) and the q theory by Tobin (1969) are equivalent, many researchers

have empirically tested the idea that the optimal rate of investment is solely determined

by Tobin’s marginal q (i.e., the expected return to investment) using Tobin’s average q

(i.e., average value of capital) as a proxy for the unobservable true q. While most of the

literature after Hayashi (1982) estimate the linear investment equation, only a few studies

pay attention to the possibility of a nonlinearity that may reside in the investment-q relation.

Although investment is indeed a function of marginal q, the linear functional form has been

used for convenience. Moreover, when it comes to the cross-sectional relationship between

investment and q, an equation that fits a nonlinear relationship is more needed because

firms with different values of q are likely to have different elasticities of investment due

to heterogeneous sets of capital to invest (e.g., Eberly, 1997). Our paper fits a nonlinear

relationship between investment and q in the cross section by estimating the classic model

of Fazzari, Hubbard, and Petersen (1988) augmented with higher-order terms in q. We find

that high and low q firms are the least sensitive while intermediate q firms are the most

sensitive in adjusting their investment in response to a change of q.

When estimating a polynomial with measurement error like our augmented regression

model, the estimation is more complicated because of the multiplicativity of measurement

error in the equation. We correct for nonseparable measurement errors in higher-order q

terms in polynomials using the instrumental variable (IV) method of Hu and Schennach

(2008). The IV estimator enables the identification of nonlinear errors-in-variables models

with the aid of an instrument. We adopt an analyst-based measure of average q as the

IV, which satisfies sufficient conditions for the identification. Like in the standard IV ap-

proach, the conditions include exclusion restrictions and a relevance condition. Also, either

monotonicity of investment in the true q or conditional heteroskedasticity is needed, and

classical measurement error (i.e., no correlation between measurement error and the true q)
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is assumed for the identification. To summarize, since we add higher-order terms in q to

the classic regression model to estimate different elasticities of investment across firms, an

estimator that can also correct for nonlinear measurement errors is needed. The Hu and

Schennach (2008) IV estimator is a solution to the estimation problem.

We find that our augmented model outperforms the classic model in fitting the cross-

sectional investment-q relation, as evidenced by significantly higher log-likelihood values.

Our bias-corrected augmented model estimated by the IV estimator shows an S-shaped

investment-q relation. This indicates that the sensitivity of investment first increases gradu-

ally as q improves and then rapidly decreases when q exceeds some intermediate value. This

pattern can be observed regardless of what proxy of q is employed. This result implies that

it is unlikely that a positive change of q caused by, for example, a corporate tax cut, leads

firms with high and low q to significantly increase their investments.

Our paper contributes to the investment literature by revealing how investment sensitivity

differs across firms. OLS gives biased results showing that investment and q are not closely

related (e.g., Erickson and Whited, 2000). Even after correcting for measurement error,

the classic regression model can be still misleading especially for the cross-sectional analysis

because it always indicates that firms change their investments at the same rate regardless

of their q characteristics. Thus, a biased-corrected augmented regression model is the key

to understand an unbiased nonlinear investment-q relation in the cross section.

Our bias-corrected augmented model showing an S-shaped relationship between invest-

ment and q predicts that investments of firms with low q are clustered at some low levels.

Likewise, investments of firms with high q are predicted to be clustered at some high levels,

and in some cases, firms with higher q are predicted to invest even less due to the con-

tinuously decreasing response of investment. These results are consistent with theoretical

predictions and empirical results in Abel and Eberly (1994), Eberly (1997), Barnett and

Sakellaris (1998), Abel and Eberly (2002), and Lee, Shin, and Stulz (2021).

Abel and Eberly (1994) extend the standard theory of investment by adopting an aug-
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mented adjustment cost function, which incorporates fixed costs and irreversibility of invest-

ment. Investment is a nondecreasing function of marginal q and is in one of three regimes

(positive, zero, or negative gross investment) in their model. The regime of zero gross invest-

ment makes the response of investment to q nonlinear. Abel and Eberly (2002) and Barnett

and Sakellaris (1998) empirically test this idea and find a nonlinear S-shaped relationship

between investment and q with no regime of zero gross investment. Eberly (1997) also find

a nonlinear but convex relationship between investment and q from international data. In a

recent study, Hoberg and Maksimovic (2021) develop a four-stage 10-K text-based model of

product life cycles, which includes q interacted with proxies for firm-year product life cycle

exposures. They find that firms initially focus on research and development (R&D). Capital

expenditures (CAPX), acquisitions, and divestitures then emerge in order as firms mature

in their life cycles. These papers estimate how the elasticity of investment develops as q

changes within firm. On the other hand, our paper estimates the cross-sectional variation

in investment sensitivity. In another recent paper, Lee, Shin, and Stulz (2021) show that

investment does not increase in the cross section with q for large firms and that the sen-

sitivity of investment to q falls as firms become older and larger. They instead find that

repurchases of large and old firms increase with q in the cross section, arguing that q is more

of a proxy for rents from the past investment than investment opportunities for such firms.

We also find that net payout consistently increases with q, which can be one of reasons for

the decreasing elasticity of investment.

One early strand of the literature examined the empirical failure of the neoclassical theory

of investment. The empirical formulation of the theory performs poorly with real data com-

pared to augmented models with proxies of financial constraints such as cash flow. Fazzari,

Hubbard, and Petersen (1988) find that when firms are financially constrained, investment

spending also varies with the availability of internal funds. This finding may reflect the exis-

tence of asymmetric information in financial markets and thus contradict the assumption of

perfect capital markets in the neoclassical theory. Fazzari, Hubbard, and Petersen (1988) and

3



the subsequent literature (e.g., Gilchrist and Himmelberg, 1995; Kaplan and Zingales, 1997;

Cleary, 1999) are questioned by Erickson and Whited (2000), arguing that the neoclassical

model cannot perform well if marginal q is mismeasured. Since marginal q is unobservable,

average q is used instead. This is where a measurement error problem arises since marginal q

and average q are different in the real world.1 Using a measurement-error-robust generalized

method of moments estimator on balanced panel data, they find that cash flow is not rele-

vant to investment decisions even for financially constrained firms, which corroborates good

predictive power of the q theory in the absence of measurement error. Cummins, Hassett,

and Oliner (2006) also cast doubt on the appropriateness of the existing measure of q, which

uses stock prices to proxy for intrinsic value, pointing out its uninformativeness and thus

persistent measurement error in it. Using financial analysts’ earnings forecasts instead, they

construct an analyst-based measure of q and find that investment is not sensitive to cash

flow. Although positive coefficients on cash flow are observed in a later work by Erickson

and Whited (2012) using the high-order moment estimator on unbalanced panel data, they

emphasize that those estimates are much smaller in magnitude and significance than the

ordinary least squares (OLS) counterparts. Erickson, Jiang, and Whited (2014) then apply

a new closed-form cumulant estimator to the investment equation and find results consistent

with Erickson and Whited (2000, 2012).

On the other hand, Almeida, Campello, and Weisbach (2004) find that constrained firms

save cash out of cash flows, which suggests that the effect of financial constraints on corporate

policies is manifested in the form of firms’ demand for liquidity. Almeida and Campello

(2007) also find that investment-cash flow sensitivity increases in the tangibility of a firm’s

assets when the firm is financially constrained, which indicates that the influence of financing

frictions on investment decisions is multiplied by asset tangibility. Almeida, Campello, and

1Assuming that the profit function and the adjustment cost function are linearly homogeneous, Hayashi
(1982) and Abel and Eberly (1994) show that the firm value is equal to the marginal q times the capital
stock, and thus average q and marginal q are essentially the same. It is well known that if firm is a price
taker in output and factor markets with constant returns to scale in production, the profit function is linearly
homogeneous.
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Galvao (2010) assess the performance of methods dealing with measurement error in q and

find that investment decisions are consistently affected by cash flow. Lewellen and Lewellen

(2016) find results that cash flow still matters for investment decisions after considering its

correlation with q, and Ağca and Mozumdar (2017) also show that cash flow is a significant

predictor of investment after employing different estimation methods and alternative proxies

of q. Firpo, Galvao, and Song (2017) estimate the investment equation using linear quantile

regression and find that the investment-cash flow sensitivity is relatively stronger at the

lower part of the conditional distribution of investment. With their own efforts to resolve the

measurement error problem, these studies provide evidence that internal funds consistently

matter for investment decisions. The interpretation of an investment-cash flow sensitivity is,

however, controversial. Even in the absence of financing constraints, investment is predicted

to be responsive to the availability of internal funds in recent theories (e.g., Abel and Eberly,

2011; Gourio and Rudanko, 2014; Abel, 2018).

The investment literature has always been an actively studied area, and there are impor-

tant recent studies in corporate finance that contribute to the literature. Peters and Taylor

(2017) find that q explains investment better when intangible capital is taken into account.

They show that the so-called “total q” is superior to the standard measure of q in that it can

proxy for both physical and intangible investment opportunities. Woeppel (2021) introduces

another new measure of Tobin’s q. Patent q that incorporates the replacement cost of patent

capital is shown to strengthen the historically weak investment-q relation. Andrei, Mann,

and Moyen (2019) find that the investment-q relation itself has also become tighter in recent

years than earlier times and that the reason is on the growing empirical dispersion in q both

in the cross-section and the time series.

This paper proceeds as follows. Section 2 describes the data. Section 3 describes the

identification strategy for addressing measurement errors in augmented models. Section 4

presents the results. Section 5 discusses the results. Section 6 concludes.
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2. Data

We use data from 1982 to 2017. Our sample includes all manufacturing firms on Com-

pustat except utilities (Standard Industrial Classification codes 4900 – 4999), financial firms

(6000 – 6999), and public administration firms (9000 – 9999). We require firms to be covered

by IBES to construct our instrumental variable qIV . We further discuss our instrument later

in this section. We deflate all series to 1990 dollars using the Consumer Price Index. We

exclude firm-year observations with missing or non-positive book value of assets or sales and

with missing or less than $5 million real 1990 dollars in gross property, plant, and equipment

(PP&E). We also exclude firm-years with negative qIV , which implies a negative firm value,

or with qIV in excess of 50, which is an unrealistically large value.2

Many studies in the literature use balanced panels with relatively short sample periods

(e.g., Gilchrist and Himmelberg, 1995; Himmelberg and Petersen, 1994; Whited, 1992). We

instead use an unbalanced panel, so survivorship bias is not our concern.3 We drop observa-

tions with missing value of our regression variables. To remove extreme outliers, we winsorize

our regression variables over the entire panel at once at the 1st and 99th percentiles. Our

final sample consists of 58,796 firm-years. The first year is 1983 because the specification

includes lagged values.

2.1. Tobin’s q, investment, and cash flow measures

Peters and Taylor (2017) show that their new measure of Tobin’s q, which is total q,

explains both physical and intangible investments better by accounting for intangible capital.

Thus, we consider both the physical measure of Tobin’s q and total q in this paper.

2For example, Almeida and Campello (2007) and Cummins, Hassett, and Oliner (2006) delete firm-years
with negative average q. Researchers sometimes discard observations with unrealistically large average q
as a crude attempt to limit the impact of measurement error. For example, Almeida and Campello (2007)
and Gilchrist and Himmelberg (1995) eliminate observations with average q exceeding 10. Abel and Eberly
(2002) restrict average q to be less than 5. Eberly (1997) drops observations with average q in excess of 15.

3Almeida and Campello (2007) and Barnett and Sakellaris (1998) also use unbalanced panels, requiring
at least three years and five consecutive years of data for each firm, respectively. The minimum number of
years required for firms in Almeida and Campello is based on the lag structure of the regression models and
their IV approach.
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In the literature, physical q is measured by scaling firm value by the replacement cost of

physical assets:

qphyit =
Vit

Kphy
it

. (1)

We measure firm value V as the market value of equity (Compustat items prcc f×csho)

plus the book value of debt (Compustat items dltt+dlc) minus the book value of current

assets (Compustat item act). The replacement cost of physical capital, denoted by Kphy, is

measured as the book value of gross PP&E (Compustat item ppegt).

Total q, denoted by qtot, is measured by scaling firm value by the replacement cost of

total capital, denoted by Ktot, which is the sum of physical and intangible capital:

qtotit =
Vit

Ktot
it

=
Vit

Kphy
it +Kint

it

. (2)

The replacement cost of intangible capital, denoted by Kint, is downloaded from Peters and

Taylor Total Q (Variable K int) on Wharton Research Data Services.

Physical investment, denoted by iphy, is measured as capital expenditures (Compustat

item capx ) divided by the replacement cost of lagged physical capital:

iphyit =
CAPXit

Kphy
i,t−1

. (3)

Total investment, denoted by itot, is measured as the sum of capital expenditures and intan-

gible investment (i.e., R&D (Compustat item xrd) plus 30% of Selling, General and Admin-

istrative (SG&A) expenses (Compustat items xsga – xrd – rdip)) divided by the replacement

cost of lagged total capital4:

itotit =
CAPXit +R&Dit + 0.3× SG&A

Ktot
i,t−1

. (4)

4We subtract R&D from xsga to isolate non-R&D SG&A when Compustat adds R&D to xsga, following
Peters and Taylor (2017).
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Cash flow, denoted by c, is measured as income before extraordinary items (Compustat

item ib) plus depreciation (Compustat item dp) divided by lagged physical capital. We also

construct Peters and Taylor’s (2017) measure of cash flow ctot, which is called total cash flow,

by adding tax-adjusted intangible investment back into the free cash flow in the numerator

and dividing it by lagged total capital:

cit =
ibit + dpit

Kphy
i,t−1

, ctotit =
ibit + dpit + (CAPXit +R&Dit + 0.3× SG&A)(1− τ)

Kphy
i,t−1 +Kint

i,t−1

, (5)

where τ is the marginal tax rate. We use the simulated marginal tax rate based on income

before interest expense from Graham (1996) when available. Otherwise, a marginal tax rate

is assumed to be 30%, which is close to the average marginal tax rate in our sample.

2.2. Analyst-based measure of Tobin’s q

Our identification strategy relies on the availability of an instrumental variable. We

construct an analyst-based measure of average q, analyst q, following the idea of Cummins,

Hassett, and Oliner (2006) and use it as our instrument. Compared to the existing measures

of q, analyst q is only different in the numerator in which equity value is measured based on

analysts’ earnings forecasts on IBES.

We focus on the means (IBES item meanest) of analysts’ forecasts of earnings per share

(IBES item measure=EPS) over the current (IBES items fiscalp=ANN with fpi=1) and

the next fiscal years (IBES items fiscalp=ANN with fpi=2) and long-term growth forecasts

(IBES items fiscalp=LTG with fpi=0), which in general represent the analysts’ consensus

on forecast of the average annual growth of earnings over the three years after the next fiscal

year. In the neoclassical theory of investment, firms make investment decisions based on the

expected returns to capital in the long-term. Thus, a long-term growth forecast could be an

important determinant of investment. Due to the limited availability of long-term growth

forecasts in IBES, our sample starts in 1982.
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Shortly after the beginning of a firm’s fiscal year, analysts send IBES initial forecasts of

earnings for that year and the next few fiscal years. We use the first forecasts for the current

and the next fiscal years as well as the first long-term growth forecast to reduce the risk of

using more information than the firm actually has when deciding its investment spending for

the current fiscal year. We then measure the analyst-based measure of equity value Ê using

those forecasts and construct q̂, an analyst-based measure of q, as described in Cummins,

Hassett, and Oliner (2006):

q̂phyi,t−1 =
Êit + dltti,t−1 + dlci,t−1 − acti,t−1

Kphy
i,t−1

, q̂toti,t−1 =
Êit + dltti,t−1 + dlci,t−1 − acti,t−1

Ktot
i,t−1

, (6)

where Êit = Πit +
1

1+rt
Πi,t+1 +

1
(1+rt)2

Πit(1 + LTGit) +
1

(1+rt)3
Πit(1 + LTGit)

2 + 1
(1+rt)4

Πit(1 +

LTGit)
3+ 1

(1+rt)4
1

r̄−ḡ
Πit(1+LTGit)

4. Πit and Πi,t+1 represent the averages of earnings forecasts

per share over the current and the next fiscal years times the corresponding number of shares

outstanding (IBES item shout) of each fiscal year. Πit is the average of the two annual

forecasts. LTGit is the mean of analysts’ long-term growth forecasts. We use the one-year

Treasury bill rate in year t plus an assumed equity risk premium of 8% as a discount factor

rt, which reflects the annual nominal equity return expected by investors in year t. r̄ is the

mean nominal equity return (12%) during the sample period. ḡ is the mean growth rate

of nominal GDP (5%) during the sample period. Other items are lagged by one year to

construct lagged q and to match the time when Êit becomes available.

Analyst q can serve as a valid instrument for the identification of the true investment-q

relation. Considering the forward-looking nature of earnings forecasts and at the same time

the independence of data source owned by well-informed professional experts, the analyst-

based measure of equity value is not identical to the market value of equity while highly

correlated with it (Abel and Eberly, 2002). As a result, analyst q is correlated with the

corresponding market-based q while unlikely to be correlated with measurement error in it.
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2.3. Summary statistics

Table 1 contains summary statistics. Total investment shows a different empirical distri-

bution, which is slightly right to the distribution of physical investment. Considering that

total investment is scaled by a larger denominator Ktot than physical investment is, the

amount of intangible investment itself is expected to be large. Our consideration of intan-

gible capital and intangible investment can thus help explore the true relationship between

investment and q in the cross section.

[Table 1 here]

The analyst-based measures of q are consistently higher than the corresponding market-

based measures of q in every statistic describing the distributions. This reflects the observa-

tion that analysts’ forecasts are overoptimistic (e.g., De Bondt and Thaler, 1990; Easterwood

and Nutt, 1999). In other words, analysts tend to believe that firms have better growth op-

portunities than the financial markets perceive. Nevertheless, both types of q are highly

correlated. The correlation between q and q̂ is 0.79, and the correlation between qtot and q̂tot

is 0.75.

We also construct other versions of total q. Using Woeppel’s (2021) estimate of intangible

capital (i.e., patent capital plus on-balance sheet intangible capital), we construct patent q.

EPW q is constructed based on Ewens, Peters, and Wang’s (2020) estimate of intangible

capital. Patent q is overall higher than total q and EPW q because patents are only con-

sidered as internally-generated intangible capital in patent q, so its denominator is smaller

than the other two proxies’. Nevertheless, patent q still gives a more reasonable range of q

than physical q.

Total cash flow has overall lower values than standard cash flow, and this is due to the

larger denominator Ktot, although tax-adjusted intangible investment is added back in the

numerator. Net payout is calculated as cash dividends plus the purchase of common and

preferred stock minus the sale of common and preferred stock, scaled by lagged total capital.
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If the calculation yields a negative or missing value, net payout is set to zero.

3. Identification strategy and implementation

The investment literature has been interested in the true investment-q relation, and most

studies estimate a linear relationship in various ways such as the higher-order moment estima-

tor (e.g., Erickson and Whited, 2000) and instrumental variable approaches (e.g., Almeida,

Campello, and Weisbach, 2004; Almeida and Campello, 2007). Considering potential non-

linearities in the investment-q relation, we fit nonlinear relationship to the data to detect

different investment sensitivities across firms. Polynomials with mismeasured regressors such

as the classic model of Fazzari, Hubbard, and Petersen (1988) with higher-order terms in

q inevitably contain errors nonseparable from the true q. Such nonlinear errors-in-variables

models can be estimated through an eigenvalue-eigenfunction decomposition following Hu

and Schennach (2008).

The true investment equation is defined by the joint distribution of investment and

marginal q. Since marginal q is unobservable, the error-contaminated counterpart, aver-

age q is used instead in empirical research. According to Hu and Schennach (2008), the

joint distribution of investment and marginal q is identifiable from the distribution of all

observed variables including an instrumental variable. Also, their treatment of measurement

error models can be extended to allow for the presence of a vector of additional correctly

measured regressors by conditioning all densities on that vector (Song, 2015). Cash flow

can thus be included in the estimation, which is essential considering its explanatory power

regarding investment.

We need investment (i), average q (qA), cash flow (c), and an instrument (qIV ) for the

identification of the joint distribution of investment, marginal q (qM), and cash flow. We are

interested in the true investment model expressed in terms of the observed i and c and the
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unobserved qM :

fi|qM c(i|qM , c). (7)

As long as we correctly identify the conditional density of investment conditional on marginal

q and cash flow, we can estimate the true investment equation. Since marginal q is unob-

served, we identify the conditional density using the innovative identification strategy from

the literature on nonlinear errors-in-variables models.

Let I, QA, QM, C, and QIV denote the supports of the distributions of the random

variables i, qA, qM , c, and qIV . Assumptions 1–4 in the Appendix lead to the theorem that

enables the identification of unknown densities. Theorem 1 in the Appendix states that

under Assumptions 1–4, given the observed density fi qA|c qIV (i, q
A| c, qIV ), the equation

fi qA|c qIV (i, q
A| c, qIV ) =

∫
QM

fi|qM c(i|qM , c)fqA|qM c(q
A|qM , c)fqM |qIV c(q

M |qIV , c) dqM (8)

admits a unique solution (fi|qM c, fqA|qM c, fqM |qIV c) for all i ∈ I, qA ∈ QA, c ∈ C, qIV ∈ QIV .

This theorem corresponds to the identification results in Hu and Schennach (2008) and

Song (2015). These papers ensure that models satisfying Assumptions 1–4 can be easily

constructed because they are not mutually contradictory.

Given the true model in Equation (7), Theorem 1 suggests the following measurement-

error-robust maximum likelihood estimator:

(θ̂0, θ̂1, θ̂2) =

argmax
(θ0,θ1,θ2)∈Θ

1

n

n∑
j=1

ln

∫
QM

fi|qM c(ij|qM , cj; θ0)fqA|qM c(q
A
j |qM , cj; θ1)fqM |qIV c(q

M |qIVj , cj; θ2) dq
M ,

(9)

where Θ is the parameter space. The analyst-based measure of q is used as the instrument

qIV . When the dependent variable is iphy, qphy, q̂phy, and standard cash flow c are employed.

Similarly, when the dependent variable is itot, qtot, q̂tot, and ctot are the regressors.
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The IV estimator covers from parametric estimation of a linear model with classical

measurement error to nonparametric estimation in the presence of nonclassical measurement

error. We approximate the unobservable conditional densities by normal distribution with

the assumptions of classical measurement error and conditional heteroskedasticity:

(i) fi|qM c(i|qM , c; θ0) = N(α0 + α1q
M + α2(q

M)2 + · · ·+ αm(q
M)m + αm+1c, eσ01+σ02qM+σ03c),

(ii) fqA|qM c(q
A|qM , c; θ1) = N(β0 + β1q

M + β2c, σ
2
1),

(iii) fqM |qIV c(q
M |qIV , c; θ2) = N(γ0 + γ1q

IV + γ2c, σ
2
2),

where θ0 = (α0, α1, . . . , αm+1, σ01, σ02, σ03)
T, θ1 = (β0, β1, β2, σ1)

T, and θ2 = (γ0, γ1, γ2, σ2)
T.

We then test whether augmented regression models with higher-order terms perform better

than the classic regression model by investigating log-likelihoods.

We impose Assumption 4 on the conditional density fqA|qM c(q
A|qM , c; θ1) in the form of

classical measurement error. Abel and Panageas (2020) show that nonclassical measure-

ment error in average q is theoretically possible when there is a stark financial constraint

that precludes raising external funds. Considering the fact that analysts follow companies

that investors are more interested in, and analysts tend to cover larger firms within an

industry (Bhushan, 1989), our IBES-covered firms are unlikely to face such a stark finan-

cial constraint. Classical measurement error has zero mean conditional on marginal q and

cash flow: M [fqA|qM c(·|qM , c)] = E[qA|qM , c] = E[qM + ε|qM , c] = qM + E[ε|qM , c] = qM

where M [f ] =
∫
X xf(x)dx. This leads to the following restrictions on the coefficients of the

conditional density fqA|qM c(q
A|qM , cj; θ1): β0 = 0, β1 = 1, and β2 = 0.

In the data, qphy ranges from -0.49 to 37.69, and qtot ranges from -0.18 to 10.70. q̂phy

ranges from 0.12 to 38.72, and q̂tot ranges from 0.06 to 12.70. When the dependent variable

is iphy, qM is assumed to range from 0 to 16.87, which is the 95th percentile of qphy. When

itot is the dependent variable, we assume that qM ranges from 0 to 4.69, which is the 95th

percentile of qtot. We then conduct the numerical integral in Equation (9) through the
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Gaussian quadrature.

The optimization procedure is repeated with several different plausible initial parameter

guesses to minimize the risk of not reaching the global optimum. We use 100 random initial

values around the coefficients estimated by OLS. To choose the degree of a polynomial m,

we continue to include higher-order q terms until a higher-order term does not increase the

log-likelihood significantly.

4. Estimation results

In this section, we test whether a nonlinearity exists in the cross-sectional investment-q

relation. We first estimate a linear relationship and then fit a nonlinear relationship to the

data using higher-order q terms while correcting for measurement errors using the Hu and

Schennach (2008) IV estimator.

4.1. Measurement-error-corrected MLE results

When estimating a regression model with mismeasured regressors, OLS gives biased

results. Specifically, in the case of investment regression models, coefficients estimated from

OLS are biased because of measurement error in average q, which is used to proxy for

marginal q. There are important studies that address this issue. For example, Erickson

and Whited (2000, 2002) develop the higher-order moment estimator, and Erickson, Jiang,

and Whited (2014) develop the higher-order cumulant estimator to correct for measurement

error in average q. These methods deal with measurement error in linear errors-in-variables

models like the classic investment equation.

In the case of linear errors-in-variables models, measurement error is separable from a

mismeasured regressor. We estimate polynomials to capture nonlinearities, and measure-

ment errors are not separable from mismeasured higher-order qs. Thus, the method that

addresses measurement error bias needs to change accordingly. The issue of measurement
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errors in regressors is not the case of endogeneity anymore in our estimation, so the existence

of conventional instrument variables, which satisfy a relevance condition and an exclusion

restriction, is not sufficient to control for measurement errors in nonlinear errors-in-variables

models.

As described in Section 3, we use the measurement-error-robust maximum likelihood esti-

mation (MLE). The MLE approach can estimate the true parameters of investment equations

from the distribution of the observed variables by correcting for measurement errors residing

in polynomials in a nonseparable fashion. We stop adding higher-order terms in q when the

log-likelihood does not improve significantly. We test whether higher-order terms bring a sig-

nificant improvement in log-likelihood to the classic regression model via the likelihood-ratio

test.

Table 2 contains the results. Columns (1) and (2) show results from regressions with

physical investment, lagged physical q terms, and contemporaneous standard cash flow.

Columns (3) and (4) report results from regressions using the total measures of investment,

q, and cash flow. We consistently find a polynomial of degree 3 when fitting a nonlinear

relationship between investment and q. The difference in log-likelihood for each pair of the

classic and augmented models is statistically significant at the 1% level. The test statistics

of the likelihood-ratio test for the null hypothesis of the classic model specification are

extremely high and thus exceed the critical value of the chi-squared distribution with two

degrees of freedom. The number of degrees of freedom is determined by the difference

in the number of parameters of the nested models. These results show that the added

higher-order qs contribute in detecting different investment sensitivities across firms, which

cannot be captured by a single q. Stock and Watson (2015) point out that economic data

is often smooth, so it is appropriate to choose small orders like 2,3, or 4. Our findings are

also consistent with their argument. To summarize, the estimated nonlinear relationships

describe the data better than the existing linearity.

[Table 2 here]
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Notably, we can observe that total q is better than physical q in explaining the relation-

ship, as it delivers greater log-likelihood values. This corroborates the previous findings in

Peters and Taylor (2017) that total q is a superior proxy for investment opportunities.

We also report OLS counterparts in Columns (1) and (3) of Table 3. The results are

from OLS regressions of investment on lagged Tobin’s q terms, contemporaneous cash flow,

and year fixed effects. The MLE results in Table 2 are restated in Columns (2) and (4) to

compare the results.

[Table 3 here]

Like from the MLE results, we also find that the augmented models estimated by OLS

fit the data better, as evidenced by higher adjusted R2 values. Also in the OLS results,

the total measures in Panel B overwhelm the physical measures in Panel A, as they deliver

higher adjusted R2 values. Compared to the OLS results, the estimated linear relationships

from the IV estimator reveal far more sensitive investment-q relations for both measures. On

the other hands, the influence of cash flow becomes smaller after correcting for measurement

error. The slope coefficients on cash flow are the smallest in the error-corrected polynomials

in Column (4). These results reveal the effect of correcting attenuation bias in the OLS

estimates of the coefficients on the q proxies through the measurement-error-robust MLE

using the IV estimator. For easier interpretation of the results from the different estimators,

we visualize the results in Figure 1.

[Figure 1 here]

Panels A and C plot the classic investment model estimated by OLS and MLE in Columns

(1) and (2) of Table 3. The MLE estimate for the slope coefficient on physical q in Panel

A shows a closer relationship between physical investment and physical q, compared to the

OLS estimate. Over the assumed range of marginal q, which is from 0 to the 95th percentile

of the observed physical q, the predicted physical investment shows sufficient variation. The

same pattern is observed when employing the total measures in Panel C.
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The goal of our paper is to estimate different elasticities of investment with respect to

cross-sectional values of q. Panels B and D plot the augmented models estimated by OLS

and MLE in Columns (3) and (4) of Table 3. The polynomials of degree 3 estimated from

OLS do not seem to bring notable dynamics to the cross-sectional variation. The plotted

nonlinear relationships look similar to the OLS-estimated linear relationships although they

are actually concave. On the other hands, we can observe more dynamic relationships from

the MLE results. The estimated nonlinear investment-q relations are consistently S-shaped

for both version of q. To summarize, after applying the IV estimator to the empirical

models, the association between investment and q becomes tighter, and we can also detect

how investment sensitivity evolves in the cross section by adopting higher-order qs.

Figure 2 plots the MLE-estimated polynomials and their first derivatives. The estimated

nonlinear physical investment-physical q in Panel A predicts similar levels of investment as

predicted by the linear relationship for q below about 5. Investment is then predicted to

be higher than predicted by a single physical q for intermediate values of physical q up to

about 14. The S-shape finally suggests that firms with higher q do not invest more or even

less in the high q region. We find a similar pattern from total investment and total q in

Panel C. The augmented regression model predicts similar levels of investment for total q

below about 2. Investment is then predicted to be higher than in the linear relationship for

intermediate values of total q up to about 4. We can also observe the decreasing level of

investment in the high q region, but it is not as conspicuous as in Panel A.

The sensitivity of investment first increases and then decreases in q in Panels B and D.

The sensitivity stays around zero for low physical q below 2 and becomes zero again for

physical q around 12. It then becomes negative, meaning that the elasticity of physical

investment is non-positive for high physical q above 12. The sensitivity of total investment

also stays at zero for total q around 4 and then becomes negative. Lastly, when q is low,

the response of investment to an improvement in q is not instant as predicted by the classic

regression model.
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To summarize, as q improves, the sensitivity gradually increases up to some intermediate

value of q in the support. After that, it starts to decrease. The elasticity is even non-positive

for very high values of q. This indicates that firms with very high q do not invest more than

firms with less high q in that region.

4.2. Other proxies of q

Although total q is a superior proxy of the true q, it is not the only measure that proxies

for both physical and intangible investment opportunities. We thus test nonlinearities with

other versions of total q and compare the results. Woeppel (2021) focuses on the market

value of patents to measure internally-generated intangible capital that does not appear on

the balance sheet and constructs patent q that incorporates the replacement cost of patent

capital. Ewens, Peters, and Wang (2020) re-estimate parameters used in Peters and Taylor

(2017) to construct intangible capital using market prices of intangibles of firms that exit

publicly traded markets due to acquisitions or bankruptcy. We construct another q proxy

using Ewens, Peters, and Wang’s (2020) estimate of intangible capital, denoted by EPW q.

Using patent q and EPW q, we re-estimate nonlinearities in the data, and the results are

reported in Table 4.

[Table 4 here]

The true q is again assumed to range from 0 to the 95th percentile of each proxy. Patent

q and its corresponding total investment and total cash flow are used in Columns (1) and (2).

EPW q and its version of total investment and total cash flow are employed in Columns (3)

and (4). We find polynomials of degree 3 again from both measures. The selected augmented

models outperform the classic empirical model for both proxies, as evidenced by higher log-

likelihoods. The slope coefficients on cash flow are consistently smaller in the augmented

models. Remarkably, EPW q outperforms patent q in explaining the cross-sectional variation

in investment as shown in the higher log-likelihoods. The estimated equations are plotted in
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Figure 3.

[Figure 3 here]

We can observe S-shapes from both q proxies. Panels A and B show that when patent q

is below 0.5, the sensitivity is non-positive. It then starts to gradually increase until qpat = 4.

After that, the elasticity decreases and stays at zero for patent q above about 8. A similar

pattern is observed from EPW q. The investment sensitivity is lower than predicted by the

linear relationship for EPW q below 1. It increases until qepw = 2 but then decreases. The

estimated sensitivity is close to zero for EPW q around 4 and is significantly negative for

very high EPW q above about 4.5.

Overall, the estimation results from the IV estimator consistently suggest that the elas-

ticity of investment is very low when q is small, meaning that investment does not increase

instantly unlike in a linear relationship when q starts to increase from 0. The sensitivity

of investment increases gradually as q improves and decreases in q above an intermediate

value in the corresponding support of q, resulting in firms with higher q do not invest more

than firms with less high q in a large q region, and this phenomenon completes the observed

S-shapes.

We can also figure out which q proxy is the best in depicting the investment-q relation

in the cross section based on log-likelihood values. Although all the three new measures of

Tobin’s q proxy for both physical and intangible investment opportunities and outperform

physical q, total q is shown to be the best for our cross-sectional analysis. We thus employ

total q and its corresponding measures of investment and cash flow for further analyses.

4.3. Investment-q relation in different periods

We find that the classic regression model augmented with squared and cubed versions

of q performs significantly better and consistently derives an S-shape in our full sample.

Nevertheless, since the IV estimator cannot accommodate year fixed effects internally, we re-
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estimate polynomials of degrees 1 and 3 in different periods to see whether we can consistently

observe a higher log-likelihood and an S-shape from the augmented model in each subperiod.

We fit the classic and augmented models to four different periods, which are 1983–1991,

1992–1999, 2000–2008, and 2009–2017. The assumed range of marginal q is from 0 to the

95th percentile of total q in each subperiod, and the results are reported in Table 5. The

augmented models give significantly higher log-likelihoods in all the subperiods, indicating

that nonlinearities consistently exist over our sample period.

The visualized results are in Figure 4. We can observe S-shapes from all the subperi-

ods. A decreasing level of investment in a high q region is more evident in the first two

subperiods, especially from 1992 to 1999. On the other hand, similar levels of investment

are predicted by both the classic and augmented models over the entire assumed ranges of

q in the last two subperiods. Nevertheless, the augmented model still provides remarkably

different predictions when it comes to investment sensitivity.

Figure 5 plots the first derivatives of the classic and augmented models estimated by

the IV estimator. A non-positive investment sensitivity in a high q region is found in all

the subperiods. During the earliest period from 1983 to 1991, the response of investment

to q is non-positive for low q below 0.5. It then increases but soon decreases and becomes

non-positive around qtot = 2.5. The sensitivity is negative for q around 3, meaning that firms

with higher q invest less in that high q region. We find a similar pattern in the next period.

In the original function (Panel B of Figure 4), we cannot find enough variation in investment

in the small q zone below 1 due to the low elasticity depicted in Panel B of Figure 5. The

sensitivity is non-positive for q above 4. A negative response of investment to q is more

evident in this period, which spans q values from 4 to 5.44.

In the recent periods, we can still find such a first convex and then concave relationship

between investment and q. However, a significantly negative elasticity of investment is not

observed in these periods. The elasticity stays at zero for q above and around 5 in Panel

C, meaning that firms with higher q do not invest more in that high q zone. Moreover,
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investment is not sensitive to low q in the latest period. We find that investment is only

sensitive to a limited range of q in Panel D. The elasticity stays at zero for q below 1

and above and around 3. This result indicates that firms do not increase their investments

immediately when q is low and do not further increase investments when q reaches a high

value like 3. We also find consistent results from untabulated results using the other measures

of q.

The evidence so far supports nonlinearities between investment and q in the cross section,

which indicates that the true investment-q relation can be illustrated more precisely by

higher-order terms in q with the existing regressors. Specifically, an S-shaped relationship

is found regardless of the q proxy, and the shape is robust in the entire sample period. The

S-shape suggests that unlike in a linear relationship, firms with low q are not predicted

to increase their investments instantly, and firms with high q are not predicted to further

increase investments as q grows over an intermediate value. Moreover, firms with higher q

are predicted to invest even less in some cases. Most importantly, this investment tendency

in the cross section cannot be found in OLS results. We further discuss our measurement-

error-corrected MLE results in Section 5.

4.4. Cumulant estimator results

The classic investment model can also be correctly measured by the cumulant estimator

of Erickson, Jiang, and Whited (2014). The cumulant estimator estimates classical linear

errors-in-variables models using information in the higher-order cumulants of observable vari-

ables to identify the coefficients. We compare our estimation of the classic model using the

IV estimator with the results from the cumulant estimator to see whether the IV estimator

corrects measurement error bias in a way consistent with the cumulant estimator. The OLS

and cumulant results using the full sample of the total measures of investment, q, and cash

flow are reported in Columns (1) and (2) of Table 6, respectively.5 The original data are

5Following Peters and Taylor (2017) and Woeppel (2021), we use the third-order cumulant estimator. All
Sargan-Hansen J statistics associated with the third- and higher-order cumulants (untabulated) reject the
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within-year transformed to control for year-fixed effects.

Similar to Column (2) of Panel B of Table 3, the cumulant estimator produces a higher

coefficient on q and a lower coefficient on cash flow after correcting attenuation bias. How-

ever, the estimates are slightly different for the q slope and largely different for the cash

flow slope. Possible reasons for the discrepancy are different estimators and the considera-

tion of year fixed effects. Nevertheless, conditioning on cash flow, our estimation of the q

slope gives a similar investment-q sensitivity over the assumed range of the true q as in the

cumulant-estimated classic regression model, indicating the validity of the IV estimator in

addressing measurement error in average q. The same pattern of correcting attenuation bias

can be observed from both estimators in the subsample analysis as well. Compared to the

OLS estimates (Columns (1) and (3) of Table 7), both the IV estimator (Columns (1) and

(3) of Table 5) and the cumulant estimator (Columns (2) and (4) of Table 7) produce larger

coefficients on q and smaller coefficients on cash flow. Especially after 2000, the estimated

investment-q sensitivities are very close to each other, conditioning on cash flow, which cor-

roborates the validity of the IV estimator in estimating the classic investment regression.

More importantly, the necessity of the IV estimator is related to our goal to estimate a

nonlinear errors-in-variables model with the aid of an instrument. Thus, the availability of

a valid instrument is the key in our estimation.

As we discuss in Section 2, analyst q is a valid instrument for the identification of the

bias-corrected investment-q relation in the cross section thanks to the independence of data

source owned by analysts. Analyst q is thus expected to be uncorrelated with measurement

error in the existing market-based measure of q (Abel and Eberly, 2002). Our next question

is whether analyst q can be more than just an instrument. In other words, we investigate

whether analyst q itself can be used as a sole q proxy. Also, the instrument is the main

regressor of the third conditional density in Equation (8).

We re-estimate the classic investment regression using the analyst-based measure of total

null hypothesis that the overidentifying restrictions are valid.
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q and the cumulant estimator to see how well analyst total q proxies for the true q. In

Table 6, we can observe that analyst total q leads to a higher adjusted R2 and a higher

ρ2, which is the coefficient of determination in the hypothetical regression of investment on

the true q and cash flow. Moreover, analyst total q also produces a higher τ 2, which is

the coefficient of determination in the hypothetical regression of the true q on a q proxy,

indicating that analyst total q is not only a valid instrument but also a better proxy of q

than the market-based measure of total q. Consistent results are found when using the other

analyst-based measures of q and also when using the fourth- and higher-order cumulant

estimators (untabulated).

5. Discussion

We find evidence that there exist heterogeneous investment sensitivities across firms.

According to the estimated nonlinear investment-q relation, firms with low q have similarly

low investment elasticities. There is little variation in investment over the low q zone. As q

improves, the sensitivity gradually increases. It then starts to decrease after an intermediate

value of q, although investment keeps increasing until q reaches a high value in an assumed

support. After that, the elasticity becomes non-positive, and in some cases, investment is

predicted to decrease as q keeps growing over a high value. In other words, firms with higher

q do not invest more over the high q zone. In this section, we discuss our results from both

theoretical and empirical perspectives.

5.1. Capital heterogeneity

We can find a theoretical basis for the S-shaped investment-q relation from Abel and

Eberly (1994), Abel and Eberly (2002), Eberly (1997), and Barnett and Sakellaris (1998).

The idea of a nonlinear relationship between investment and q originates from Abel and

Eberly (1994). Abel and Eberly (1994) extend the standard q theory of investment of
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Hayashi (1982) by incorporating fixed costs and irreversibility of investment (i.e., different

purchase and resale prices of capital goods) in the adjustment cost function.

Abel and Eberly (1994) show that if the augmented adjustment cost function is nondif-

ferentiable at the level of investment equal to zero due to the presence of fixed costs and

irreversibility of investment, there can be a region in which the optimal investment stays at

zero but does not satisfy the first-order condition for a range of q. As a result, investment

behavior alternates between responsive and irresponsive regimes in response to q, which im-

plies a nonlinearity in the investment-q relation. Investment is still a nondecreasing function

of q, but its sensitivity to q can vary across the regions above and below the regime of

irresponsive investment behavior in this extended framework.

Barnett and Sakellaris (1998) empirically test this idea by allowing the relationship to

vary across regimes defined by the level of average q. However, they emphasize that a

direct test of Abel and Eberly’s (1994) model is difficult in practice because there are few

observations of zero and negative investments when using the Compustat item capx as the

gross investment variable. They instead show that the model can further be extended by

embracing another regime. Suppose that an additional proportional cost incurs when the

firm invests beyond a threshold rate of investment, say I/K = θ. If θ equals the depreciation

rate of capital stock, say δ, investment beyond δK is for expansion, and the price of capital

for expansion can be higher than that for replacement. If θ is the usual rate of investment,

and if the firm invests beyond that, an additional proportional cost can incur in the form of

overtime wage for installing additional capital goods. As a result, the augmented adjustment

cost function has a kink at I/K = θ, and there comes another region of insensitivity, which

results in three regimes for positive investments.

Barnett and Sakellaris then estimate nonlinear specifications that include up to a cubic

term in average q or in log of average q in each regime to take account of the effect of

higher-order terms in q.6 The identified investment-q relation is convex for low values of

6The three regimes are defined by threshold parameters, say ωh and ωl. These are nuisance parameters
that are not identified under the null hypothesis of only one regime. These parameters are identified by
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q and concave for intermediate and high values of q, i.e., an S-shape, with no regime of

insensitivity, and the relationship is shown to be better explained under the three regimes.

Abel and Eberly (2002) and Eberly (1997) specify the parametric form of the augmented

adjustment cost function and show that a firm starts to invest when its q exceeds an upper

threshold, say q̄. In other words, a firm decides to invest when the total return of investment

is high enough to at least cover the total costs. Abel and Eberly find significant nonlinearities

by allowing for either a nonquadratic adjustment cost function or capital heterogeneity.7 A

concave relationship between investment and q is estimated in their homogeneous capital

model with nonquadratic adjustment costs. On the other hand, their heterogeneous capital

model, which enables the firm to invest in heterogeneous capital goods, provides rationales

for the S-shape found in our paper. In the heterogeneous capital model, firms increase

their investments both in the scale (intensive margin) and in the number of types (extensive

margin) as q improves. However, when q is low, firms choose to invest little and in few types

of capital. Thus, the model predicts a stronger response of investment after q improves

beyond low values, and such a strong sensitivity of investment can be interpreted as an

outcome of both intensive and extensive margins being reflected in investment decisions.

However, the extensive margin is gradually depleted as q keeps growing. This phenomenon

is manifested in the reduced response of investment in the intermediate and high q regions

in our results.

Eberly (1997) estimates the homogeneous capital model and finds a convex investment-q

relation in 6 out of 11 countries including the US. In the heterogeneous capital model, Eberly

shows that a degenerate extensive margin can be rejected, so linearity can be rejected in 9

out of 11 countries and that a degenerate intensive margin can also be rejected in 4 out of the

9 countries including the US. This means that both margins play statistically significant roles

estimating an alternative threshold model using the technique developed by Hansen (1996). See Barnett and
Sakellaris (1998) for details.

7Even if the adjustment cost function is quadratic, so the investment-q relation is linear for any given
type of capital, the aggregation across different types of capital with different investment thresholds can
make the overall relationship nonlinear.
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in deciding investment spending in those four countries, which predicts a convex relationship

between investment and q. The contradictory results between Abel and Eberly (2002) and

Eberly (1997) can be due to different samples. Abel and Eberly use an unbalanced panel of

US firms, while Eberly uses a balanced panel of international firms. Eberly emphasizes that

sample selection is a critical issue in identifying nonlinearities because the distribution of q

determines where to be examined and one’s conclusion can be different accordingly. On the

other hand, it is less important in a linear relationship because the relationship is assumed

to be the same across different values of q.

The S-shape in the cross section can be interpreted from the perspective of the hetero-

geneous capital model. For firms with low q (e.g., below 1 in Panels C and D of Figure 2),

their investment levels are clustered around 0.1 with little variation. This is consistent with

the prediction in the heterogeneous capital model that firms choose to invest little and in

few types of capital when q is low. After the low q zone, the elasticity of investment first

increases and then decreases as q keeps improving, resulting in the decreasing response of

investment to q over an intermediate value (e.g., 2 in Panels C and D of Figure 2). This

prediction is also consistent with the model in which firms invest both in the scale and in

the number of types of capital goods as q grows and then begin to invest mostly in the scale

because only a few types of capital remain when q is high.

5.2. Industrial organization (IO) q

Interestingly, in our results, the elasticity of investment not only decreases but also be-

comes non-positive and even negative for very large q (e.g., qtot > 4 in Panel D of Figure 2).

This phenomenon results in investments clustered around 0.4 with little variation in the high

q zone (e.g., Panel C of Figure 2). This indicates that the intensive margin can also be de-

pleted, and after that, firms reduce their investments although q increases. The response of

investment to q for very high q can be significantly negative, as evidenced by the confidence

bands in Figure 2, for example. Although depletion of the intensive margin is not considered
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in the heterogeneous capital model, it is plausible because firms cannot invest infinitely in

the remained few capital goods. There are also theoretical and empirical perspectives that

view q as a proxy for rents than investment opportunities for firms with large q.

In the industrial organization literature, q is mostly used as a measure of monopoly and

Ricardian rents (e.g., Stigler, 1964; Lindenberg and Ross, 1981; Montgomery and Wernerfelt,

1988). Lee, Shin, and Stulz (2021) predict that if a firm has high q because of rents, the

firm would not increase its size through investment because it wants its unique assets to be

in short supply. If this is the case, Tobin’s q is called as IO q. Lee, Shin, and Stulz (2021)

find that both the industry-level and firm-level sensitivities of investment to q collapse in a

recent period (1997–2014). In the meantime, capital flows out of high q industries because

high q industries return equity capital to investors. They argue that in the case of large old

firms, q capitalizes rents from their market power, and those with higher q have more cash

flow to payout. As a result, paying out to investors is optimal if there are only poor projects

left, so equity capital flows out of high q industries.

In our results, the decreasing and non-positive sensitivity of investment is not restricted to

recent periods. We can observe it from the entire period. The negative investment sensitivity

is consistent with the idea of IO q. After the extensive margin is depleted, firms start to

focus on the intensive margin. However, the intensive margin is eventually depleted too as

firms keep investing in a few types of capital remained. High q firms with no margin to invest

now choose to pay out rents from their past investment to investors instead of investing in

poor projects.

We run OLS regressions of net payout on lagged total q, contemporaneous total cash

flow, and year fixed effects. We compute net payout as cash dividends (Compustat item dv)

plus the purchase of common and preferred stock (Compustat item prstkc) minus the sale

of common and preferred stock (Compustat item sstk), scaled by lagged total capital. The

results are reported in Table 8. As shown in Lee, Shin, and Stulz (2021), firms with higher

q consistently pay out and repurchase more during the entire period in our data, indicating
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that a firm with the largest q pays out the most. Considering that cash for dividends and

repurchases mainly comes from internal cash and leads to reductions in capital expenditures

and R&D expenses (e.g., Wang, Yin, and Yu, 2021), the negative response of investment to

very large q can be explained by IO q.

6. Concluding remarks

The neoclassical investment-q theory has been widely tested on its performance in ex-

plaining corporate investment behavior, and most studies estimate linear relationships. Our

paper starts with a simple question: what if the true optimal investment behavior is more

complicated than that described by a linear relationship? According to Hayashi (1982),

the optimal investment is an unknown function of marginal q, which indicates that the

true investment-q is not necessarily linear. Moreover, when it comes to the cross-sectional

relationship, firms with different q characteristics are likely to have non-homogeneous sensi-

tivities of investment due to heterogeneous sets of capital to invest (e.g., Abel and Eberly,

2002). We augment the classic investment regression with higher-order terms in q and fit the

augmented model to the cross section to capture potential nonlinearities in the investment-q

relation while correcting for linear and nonlinear measurement errors in q terms. We find

that investment is an S-shaped function of q. Firms with higher q invest more in most part

of the support of q, but the elasticity of investment is very low for firms with low q. The

investment sensitivity decreases for intermediate-high values of q and is predicted to be neg-

ative for firms with very large q. This implies that it is unlikely that an improvement in q

caused by a policy change, for example, a corporate tax cut, leads firms with small or large

q to sufficiently increase their investments. We consistently find S-shapes from the entire

sample period and from all proxies of q.

Our sample is constructed based on Compustat firms covered by IBES from 1982 to

2017, which is to construct a repeated measurement of average q using analysts’ forecasts of
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earnings and long-term growth. As a result, the firms in our sample might not represent the

average US public firm, so one must be careful with extrapolation of our results to the rest

of the firms in Compustat that are not included in our sample. Nevertheless, our results still

have important implications because our findings are about investment decisions made by

firms that represent 80% of the total market capitalization of the US firms that are available

for a general corporate investment study during the sample period. This means that our

results focus on investment behavior of firms that mainly drive investment spending in the

US economy.
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Panel A: Linear iphy–qphy relation Panel B: Nonlinear iphy–qphy relation

Panel C: Linear itot–qtot relation Panel D: Nonlinear itot–qtot relation

Figure 1. Investment-q relation

This figure presents investment as a function of q. The classic and augmented investment
models estimated by OLS and measurement-error-robust MLE using the Hu and Schennach
(2008) IV estimator in Table 3 are plotted. Panels A and C (B and D) plot the estimated
linear (nonlinear) relationship between investment and q. 95% bootstrapped confidence
bands are plotted. Physical (total) investment and physical (total) q are the variables in
Panels A and B (C and D).
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Panel A: iphy–qphy relation Panel B: Sensitivity of iphy to ∆qphy

Panel C: itot–qtot relation Panel D: Sensitivity of itot to ∆qtot

Figure 2. The elasticity of investment with respect to q

This figure presents the relationship between investment and q. The classic and augmented
investment models estimated by measurement-error-robust MLE using the Hu and Schennach
(2008) IV estimator in Table 2 are plotted in Panels A and C. The first derivatives with
respect to q from the estimated classic and augmented investment models are plotted in
Panels B and D. 95% bootstrapped confidence bands are plotted. Physical (total) investment
and physical (total) q are the variables in Panels A and B (C and D).
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Panel A: itot–qpat relation Panel B: Sensitivity of itot to ∆qpat

Panel C: itot–qepw relation Panel D: Sensitivity of itot to ∆qepw

Figure 3. Investment-patent q/EPW q relation

This figure presents the relationship between investment and other proxies of q, which
are patent q and EPW q. The classic and augmented investment models estimated by
measurement-error-robust MLE using the Hu and Schennach (2008) IV estimator in Table 4
are plotted in Panels A and C. The first derivatives with respect to q from the estimated
classic and augmented investment models are plotted in Panels B and D. 95% bootstrapped
confidence bands are plotted. Patent q (EPW q) and its corresponding total investment are
the variables in Panels A and B (C and D).
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Panel A: itot–qtot relation in 1983–1991 Panel B: itot–qtot relation in 1992–1999

Panel C: itot–qtot relation in 2000–2008 Panel D: itot–qtot relation in 2009–2017

Figure 4. Investment-q relation in different periods

This figure presents investment as a function of q in different periods. The classic and
augmented investment models estimated by measurement-error-robust MLE using the Hu
and Schennach (2008) IV estimator in Table 5 are plotted. 95% bootstrapped confidence
bands are plotted. Total investment and total q are the variables.
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Panel A: Sensitivity of itot to ∆qtot

in 1983–1991
Panel B: Sensitivity of itot to ∆qtot

in 1992–1999

Panel C: Sensitivity of itot to ∆qtot

in 2000–2008
Panel D: Sensitivity of itot to ∆qtot

in 2009–2017

Figure 5. The elasticity of investment with respect to q in different periods

This figure presents the first derivatives with respect to q in different periods from the classic
and augmented investment models estimated by measurement-error-robust MLE using the
Hu and Schennach (2008) IV estimator. 95% bootstrapped confidence bands are plotted.
Total investment and total q are the variables.
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Table 1. Summary statistics
This table presents summary statistics on the annual Compustat sample covered by IBES from 1983
to 2017. Physical investment is CAPX divided by lagged physical capital (i.e., gross PP&E). Total
investment is CAPX plus intangible investment (i.e., R&D expense plus 30% of SG&A expense),
divided by lagged total capital (i.e., the sum of physical capital and Peters and Taylor’s (2017)
estimate of intangible capital). The numerator of each market-based (i.e., non analyst-based)
measure of q is the market value of equity plus the book value of debt minus current assets. The
numerator of each analyst-based measure of q is the analyst value of equity plus the book value
of debt minus current assets. The denominators of physical q and analyst physical q are physical
capital. The denominators of total q and analyst total q are total capital. The denominators of
patent q and analyst patent q are the sum of physical capital and Woeppel’s (2021) estimate of
intangible capital (i.e., patent capital plus on-balance sheet intangible capital). The denominators
of EPW q and Analyst EPW q are the sum of physical capital and Ewens, Peters, and Wang’s
(2020) estimate of intangible capital. Standard cash flow is income before extraordinary items plus
depreciation, divided by lagged physical capital. Total cash flow is income before extraordinary
items plus depreciation plus tax-adjusted intangible investment, scaled by lagged total capital.
Net payout is cash dividends plus the purchase of common and preferred stock minus the sale of
common and preferred stock, scaled by lagged total capital. All ratios are winsorized at the 1st
and 99th percentiles.

Mean Standard deviation P5 Median P95 Observations

Physical investment 0.169 0.158 0.035 0.118 0.480 58,796
Total investment 0.196 0.146 0.049 0.157 0.488 58,796
Physical q 4.119 6.359 0.172 1.748 16.872 58,796
Analyst physical q 5.685 7.412 0.409 2.832 22.456 58,796
Total q 1.399 1.720 0.087 0.865 4.693 58,796
Analyst total q 2.020 2.199 0.239 1.312 6.531 58,796
Patent q 2.183 3.375 0.139 1.089 8.282 58,796
Analyst patent q 3.274 4.573 0.312 1.710 12.411 58,796
EPW q 1.459 1.764 0.097 0.908 4.855 58,796
Analyst EPW q 2.116 2.268 0.254 1.389 6.791 58,796
Standard cash flow 0.288 0.415 -0.135 0.205 1.069 58,796
Total cash flow 0.190 0.150 0.014 0.163 0.479 58,796
Net payout 0.029 0.054 0.000 0.006 0.133 58,796
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Table 2. Measurement-error-corrected maximum likelihood estimation results
This table reports the classic and augmented investment models estimated by measurement-error-
robust MLE using the Hu and Schennach (2008) IV estimator. Physical investment, lagged physical
q (qphy), and contemporaneous standard cash flow (c) are used in Columns (1) and (2). Total
investment, lagged total q (qtot), and contemporaneous total cash flow (ctot) are used in Columns
(3) and (4). Block bootstrapped standard errors treating each firm as one block are computed
based on 500 replications and are reported in parentheses.

(1) (2) (3) (4)
Physical investment Total investment

qphy 0.0310 -0.0121
(0.0005) (0.0142)

c -0.0173 0.0013
(0.0059) (0.0043)

(qphy)2 0.0099
(0.0035)

(qphy)3 -0.0005
(0.0002)

qtot 0.0718 -0.0065
(0.0024) (0.0277)

ctot 0.3574 0.3155
(0.0169) (0.0223)

(qtot)2 0.0561
(0.0159)

(qtot)3 -0.0092
(0.0026)

Log-likelihood -122814.89 -122057.61 -37838.07 -37581.75
LR test statistic 1514.56 512.64
Observations 58,796 58,796 58,796 58,796
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Table 3. Comparing OLS and measurement-error-corrected MLE results
This table reports the classic and augmented investment models estimated by OLS and
measurement-error-robust MLE using the Hu and Schennach (2008) IV estimator. Physical in-
vestment, lagged physical q (qphy), and contemporaneous standard cash flow (c) are used in Panel
A. Total investment, lagged total q (qtot), and contemporaneous total cash flow (ctot) are used in
Panel B. OLS results are from regressions of investment on lagged Tobin’s q, contemporaneous cash
flow, and year fixed effects. Measurement-error-corrected MLE results are restated from Table 2.
Standard errors clustered by firm from OLS and block bootstrapped standard errors from the IV
estimator are reported in parentheses.

(1) (2) (3) (4)
Panel A: Physical investment OLS MLE OLS MLE

qphy 0.0087 0.0310 0.0233 -0.0121
(0.0003) (0.0005) (0.0009) (0.0142)

c 0.0433 -0.0173 0.0341 0.0013
(0.0034) (0.0059) (0.0034) (0.0043)

(qphy)2 -0.0011 0.0099
(0.0001) (0.0035)

(qphy)3 0.0000 -0.0005
(0.0000) (0.0002)

Adjusted R2 0.2071 0.2207
Log-likelihood -122814.89 -122057.61
LR test statistic 1514.56

Panel B: Total investment OLS MLE OLS MLE

qtot 0.0203 0.0718 0.0235 -0.0065
(0.0010) (0.0024) (0.0026) (0.0277)

ctot 0.4285 0.3574 0.4251 0.3155
(0.0092) (0.0169) (0.0093) (0.0223)

(qtot)2 -0.0002 0.0561
(0.0008) (0.0159)

(qtot)3 -0.0000 -0.0092
(0.0001) (0.0026)

Adjusted R2 0.4316 0.4319
Log-likelihood -37838.07 -37581.75
LR test statistic 512.64
Observations 58,796 58,796 58,796 58,796
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Table 4. Other proxies of q : patent q and EPW q
This table reports the classic and augmented investment models estimated by measurement-error-
robust MLE using the Hu and Schennach (2008) IV estimator. Total investment (scaled by the
denominator of lagged patent q), lagged patent q (qpat), and total cash flow (ctot) (scaled by the
denominator of lagged patent q) are used in Columns (1) and (2). Total investment using Ewens,
Peters, and Wang’s (2020) estimate of the fraction of SG&A invested in organizational capital
(scaled by the denominator of lagged EPW q), lagged EPW q (qepw), and total cash flow (ctot)
using the same estimate of the fraction of SG&A invested in organizational capital (scaled by the
denominator of lagged EPW q) are used in Columns (3) and (4). Block bootstrapped standard
errors treating each firm as one block are computed based on 500 replications and are reported in
parentheses.

(1) (2) (3) (4)
Total investment

qpat 0.0630 -0.0301
(0.0018) (0.0046)

ctot 0.6292 0.4783
(0.0112) (0.0291)

(qpat)2 0.0492
(0.0056)

(qpat)3 -0.0040
(0.0008)

qepw 0.0804 -0.0061
(0.0024) (0.0056)

ctot 0.3279 0.2448
(0.0173) (0.0225)

(qepw)2 0.0644
(0.0042)

(qepw)3 -0.0102
(0.0007)

Log-likelihood -104735.87 -103408.08 -43086.53 -42672.65
LR test statistic 2655.58 827.76
Observations 58,796 58,796 58,796 58,796
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Table 5. Investment-q relation in different periods
This table reports investment-q relation in different periods estimated by measurement-error-robust
MLE using the Hu and Schennach (2008) IV estimator. Total investment, lagged total q (qtot), and
contemporaneous total cash flow (ctot) are employed. Block bootstrapped standard errors treating
each firm as one block are computed based on 500 replications and are reported in parentheses.

(1) (2) (3) (4)
Panel A: Before 2000 1983 – 1991 1992 – 1999

qtot 0.0901 -0.0328 0.0648 -0.0167
(0.0054) (0.0583) (0.0031) (0.0077)

ctot 0.5149 0.5014 0.4653 0.4306
(0.0277) (0.0270) (0.0224) (0.0253)

(qtot)2 0.1239 0.0569
(0.0489) (0.0054)

(qtot)3 -0.0314 -0.0094
(0.0114) (0.0008)

Log-likelihood -3575.47 -3546.82 -13148.40 -13057.39
LR test statistic 57.30 182.02
Observations 10,407 10,407 16,988 16,988

Panel B: After 2000 2000 – 2008 2009 – 2017

qtot 0.0652 0.0225 0.0867 -0.0081
(0.0033) (0.0071) (0.0038) (0.1899)

ctot 0.2452 0.2026 0.1283 0.1080
(0.0232) (0.0326) (0.0207) (0.0884)

(qtot)2 0.0289 0.0764
(0.0051) (0.1165)

(qtot)3 -0.0043 -0.0152
(0.0008) (0.0226)

Log-likelihood -11513.63 -11470.89 -3459.75 -3376.47
LR test statistic 85.48 166.56
Observations 17,774 17,774 13,627 13,627
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Table 6. Classic investment model estimated by the cumulant estimator
This table reports the classic investment model estimated by OLS and the Erickson, Jiang, and
Whited (2014) cumulant estimator. Total investment, lagged total q (qtot) in Columns (1) and (2),
the analyst-based measure of lagged total q (q̂tot) in Columns (3) and (4), and contemporaneous
total cash flow (ctot) are employed. The original data are within-year transformed to accommodate
year fixed effects. ρ2 is the within-year R2 from the hypothetical regression of investment on the
true q and cash flow. τ2 is the within-year R2 from the hypothetical regression of a q proxy on the
true q. Standard errors clustered by firm are reported in parentheses.

(1) (2) (3) (4)
Total investment OLS Cumulant OLS Cumulant

qtot 0.0203 0.0820
(0.0010) (0.0023)

q̂tot 0.0186 0.0697
(0.0007) (0.0017)

ctot 0.4285 0.0313 0.3833 -0.1004
(0.0092) (0.0220) (0.0095) (0.0210)

Adjusted R2 0.4316 0.4395
ρ2 0.5130 0.5329

(0.0123) (0.0114)
τ2 0.4853 0.5669

(0.0167) (0.0132)
Observations 58,796 58,796 58,796 58,796
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Table 7. Classic investment model estimated by the cumulant estimator in different
periods
This table reports the classic investment model estimated by OLS and the Erickson, Jiang, and
Whited (2014) cumulant estimator in different periods. Total investment, lagged total q (qtot), and
contemporaneous total cash flow (ctot) are employed. The original data are within-year transformed
to accommodate year fixed effects. ρ2 is the within-year R2 from the hypothetical regression of
investment on the true q and cash flow. τ2 is the within-year R2 from the hypothetical regression
of a q proxy on the true q. Standard errors clustered by firm are reported in parentheses.

(1) (2) (3) (4)
OLS Cumulant OLS Cumulant

Panel A: Before 2000 1983 – 1991 1992 – 1999

qtot 0.0183 0.1370 0.0231 0.0905
(0.0026) (0.0174) (0.0016) (0.0040)

ctot 0.5764 0.0520 0.4739 0.0401
(0.0213) (0.0848) (0.0145) (0.0340)

Adjusted R2 0.4386 0.4298
ρ2 0.5445 0.5547

(0.0326) (0.0182)
τ2 0.3717 0.5010

(0.0355) (0.0209)
Observations 10,407 10,407 16,988 16,988

Panel B: After 2000 2000 – 2008 2009 – 2017

qtot 0.0222 0.0671 0.0171 0.0810
(0.0013) (0.0021) (0.0022) (0.0062)

ctot 0.3178 -0.0169 0.3274 -0.1117
(0.0136) (0.0255) (0.0187) (0.0541)

Adjusted R2 0.3936 0.3075
ρ2 0.5341 0.4316

(0.0189) (0.0305)
τ2 0.5449 0.4860

(0.0236) (0.0341)
Observations 17,774 17,774 13,627 13,627
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Table 8. Net payout-Tobin’s q relation
This table reports net payout-Tobin’s q relation during the entire and subperiods estimated by OLS.
Results are from regressions of net payout on lagged total q (qtot), contemporaneous total cash flow
(ctot), and year fixed effects. Standard errors clustered by firm are reported in parentheses.

(1) (2) (3) (4) (5)
Net payout Full 1983–1991 1992–1999 2000–2008 2009–2017

qtot 0.0044 0.0018 0.0023 0.0048 0.0083
(0.0004) (0.0008) (0.0005) (0.0006) (0.0012)

ctot 0.0410 0.0209 0.0158 0.0598 0.0991
(0.0032) (0.0061) (0.0042) (0.0052) (0.0098)

Adjusted R2 0.0817 0.0164 0.0237 0.1060 0.1478
Observations 58,796 10,407 16,988 17,774 13,627
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Appendix: Identification

We consider that the joint density of i and qA, qM , c, qIV admits a bounded density with

respect to the product measure of some dominating measure µ defined on I and the Lebesgue

measure on QA×QM×C×QIV . We assume that all marginal and conditional densities are

also bounded. We consider all the random variables to be jointly continuously distributed in

this treatment. For the identification of the density of our interest, fi|qM c(i|qM , c), we make

similar assumptions like those in Hu and Schennach (2008) and Song (2015).

Assumption 1. (i) fi|qAqM c qIV (i|qA, qM , c, qIV ) = fi|qM c(i|qM , c) for all (i, qA, qM , c, qIV ) ∈

I × QA × QM × C × QIV and (ii) fqA|qM c qIV (q
A|qM , c, qIV ) = fqA|qM c(q

A|qM , c) for all

(qA, qM , c, qIV ) ∈ QA ×QM × C ×QIV .

Assumption 1 (i) specifies that the observed regressor qA and the instrument qIV do

not provide any more information about the dependent variable i than the true unobserved

regressor qM and the additional observed regressor c already provide. This is satisfied when

measurement errors in qA and qIV do not immediately affect unobserved causes of i. Similarly,

Assumption 1 (ii) indicates that qIV does not provide any further information about qA given

qM and c, which is satisfied when measurement error in qA is independent of qIV given qM

and c. These assumptions can be interpreted as exclusion restrictions in the standard IV

approach.

Let a and b denote random variables with respective supports A and B. Given two

corresponding spaces G(A) and G(B) of functions with domains A and B, respectively, let

Lb|a denote the operator mapping g ∈ G(A) to Lb|ag∈ G(B) defined by

[Lb|ag](b) ≡
∫
A
fb|a(b|a) g(a) da.8

Assumption 2. The operators LqA|qM c and LqIV |qAc are injective.

8We refer to Definition 1 in Hu and Schennach (2008).
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The space G(A) upon which the operator Lb|a acts must be sufficiently large so that

the density fb|a(b|a) can be sampled everywhere and thus be uniquely determined by the

operator. Assumption 2 imposes restrictions on the relationships between qA, qM , c, and qIV .

An operator Lb|a is injective if there is enough variation in the density of b for different values

of a. In this sense, Assumption 2 implies that given c, qA has enough information about qM ,

and qIV has enough information about qA. This condition is related to the rank condition

in the standard IV approach and easily holds as long as the amounts of measurement errors

are reasonable.

Assumption 3. For any c ∈ C and any qM1 , qM2 ∈ QM, the set {i : fi|qM c(i|qM1 , c) ̸=

fi|qM c(i|qM2 , c)} has a positive probability whenever qM1 ̸= qM2 .

Assumption 4. For any given c ∈ C, there exists a known functional M such that

M [fqA|qM c(·|qM , c)] = qM for all qM ∈ QM.

Assumptions 3 and 4 ensure a unique decomposition of an integral operator associated

with the joint density of the observables. Assumption 3 is only violated if the distribution of

i conditional on qM and c is identical at different values of qM , so the presence of conditional

heteroskedasticity or monotonicity of i in qM conditional on c is sufficient to satisfy the

assumption. Assumption 4 places a restriction on some measure of the location of a density.

M is a general functional mapping a density to a real number. This assumption allows

for measurement error in the model to be either classical or nonclassical because M can

take any form. To deal with the case of nonclassical measurement error, Hu and Schennach

(2008) exploits the observation that even though measurement error may not have zero mean

conditional on the true regressors, some other measures of location (e.g., mode or median)

could still be zero.9 Assumption 4 is invoked by this observation.

9For example, consider M that defines the mode or the median of a density: M [f ] = argmax
x∈X

f(x),

M [f ] = inf{x∗ ∈ X ∗ :
∫
1(x ≤ x∗)f(x)dx ≥ 0.5} where x∗ is the unobserved true regressor and x is the

error-contaminated counterpart. These are two examples of M that cover nonclassical measurement error in
x of various forms.
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Theorem 1. Under Assumptions 1–4, given the observed density fi qA|c qIV (i, q
A|c, qIV ), the

equation

fi qA|c qIV (i, q
A|c, qIV ) =

∫
QM

fi|qM c(i|qM , c)fqA|qM c(q
A|qM , c)fqM |qIV c(q

M |qIV , c) dqM (8′)

admits a unique solution (fi|qM c, fqA|qM c, fqM |qIV c) for all i ∈ I, qA ∈ QA, c ∈ C, qIV ∈ QIV .

Assumption 1 facilitates the operation of integration in Equation (8′) that relates the joint

density of the observables to the joint densities of the unobservable variable qM . Specifically,

the identification of the density of interest fi|qM c can be achieved through the eigenvalue-

eigenfunction decomposition of an integral operator associated with the joint density of the

observables. Assumptions 3 and 4 ensure uniqueness of this decomposition.
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