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1 Introduction

How can one construct investment strategies that deliver an optimal risk-return tradeoff?

Markowitz (1952) addresses this fundamental question in finance by proposing a simple

mean-variance mathematical program to construct well-diversified portfolios. A critical as-

sumption in Markowitz’s theory is that investors know the true distributional properties of

stock returns. This assumption is problematic because, since Markowitz (1952), academics

have extensively documented that sample mean-variance portfolios contaminated by the es-

timation errors in the vector of means and the covariance matrix of stock returns tend to

deliver poor out-of-sample performance (Jagannathan and Ma, 2003; DeMiguel, Garlappi,

and Uppal, 2009b; Tu and Zhou, 2011). A key insight from this literature is that out-of-

sample portfolio performance is a random variable influenced by the random sample used

to construct the portfolio. An influential paper that explicitly acknowledges the stochastic

nature of out-of-sample portfolio performance is Kan and Zhou (2007). Kan and Zhou char-

acterize the average out-of-sample utility (OOSU) of mean-variance investors and exploit

this analytical characterization to assess the average utility losses of sample portfolios and

construct portfolio combinations that improve OOSU mean.

Instead, in this manuscript, we study the OOSU risk of sample portfolios, which is essen-

tial to fully understand the stochastic nature of the performance of quantitative investment

strategies. In particular, we characterize the asymptotic distribution of the OOSU of the

sample mean-variance (SMV) portfolio, the sample global-minimum-variance (SGMV) port-

folio, and any combination of the two portfolios. We show that the asymptotic distribution

of OOSU is Gaussian, and thus it is fully characterized by its mean and variance, which we

characterize in closed form. We then derive the analytical expression for the finite-sample

OOSU variance of the SMV and SGMV portfolios and any combination of the two.

In line with the idea that the quality of investment strategies should not be judged by a

single realization of their stochastic performance (Lo, 2002; Harvey and Liu, 2014), our closed-

form expressions of the OOSU variance of sample portfolios advances our understanding

of estimation risk in portfolio selection by providing a more comprehensive picture of the

performance uncertainties faced by investors exploiting quantitative strategies. For example,

1



the OOSU two-sigma interval of the SMV portfolio calibrated from a dataset of 25 portfolios

of stocks sorted on size and book-to-market (25SBTM) with 120 monthly return observations

is [−12.7%, 0.66%] for a risk-aversion coefficient of three. This large variation in the monthly

OOSU of quantitative strategies represents a paramount concern for investors who deem

performance uncertainty a critical factor affecting their investment decisions.

We use our characterization of OOSU risk to develop a novel metric of portfolio robust-

ness defined as the difference between OOSU mean and a multiple of OOSU risk. We assess

the robustness of quantitative strategies that combine the SMV and SGMV portfolios as

in Garlappi, Uppal, and Wang (2007) and Kan, Wang, and Zhou (2021b).1 We show theo-

retically that neither the SMV portfolio nor the SGMV portfolio offers the maximal robust

performance individually and that one must optimally combine both to achieve a better

tradeoff between OOSU mean and OOSU volatility.

The robustness criterion we propose to combine portfolios resembles the diversification

idea behind the mean-variance efficient frontier of Markowitz (1952). Instead of obtaining the

combination of stocks that achieves the optimal tradeoff between mean return and variance,

we obtain the combination of estimated portfolios that achieves the optimal tradeoff between

OOSU mean and variance. Our empirical analysis shows that investment strategies that

optimize our robustness metric deliver better out-of-sample performance than those that

ignore OOSU risk across different datasets.

Our manuscript makes four contributions to the existing literature on parameter un-

certainty and portfolio selection. First, we characterize the asymptotic distribution and the

finite-sample variance of the OOSU of the SMV portfolio, the SGMV portfolio, and any com-

bination of these two portfolios. Using our analytical results, we document that the SMV

portfolio’s OOSU volatility is substantially larger than that of the SGMV portfolio. Take,

for instance, the 25SBTM dataset and a risk-aversion coefficient of three. For this case, the

OOSU standard deviation of the SMV portfolio is 29 times larger than that of the SGMV

portfolio when both portfolios are estimated using 120 monthly observations. In this par-

ticular case, the SMV portfolio requires an unrealistically large sample size of over 13,000

1Our portfolio robustness metric can accommodate a broader range of portfolio combinations. Indeed,
in Section IA.4.5 of the Internet Appendix, we extend our analysis to a shrinkage portfolio that combines
the SMV portfolio, the SGMV portfolio, and the equally weighted portfolio as in Tu and Zhou (2011).
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monthly observations –more than 1,000 years of data– to deliver an out-of-sample perfor-

mance as stable as that of the SGMV portfolio. More generally, we show that the OOSU

risk of sample portfolios increases in high-dimensional settings where the number of assets

is large relative to the number of sample observations.

Our second contribution is to propose a novel measure of portfolio robustness defined

as the difference between OOSU mean and a multiple of OOSU standard deviation. In our

view, a robust portfolio should deliver a stable out-of-sample utility that performs well on

average. The robustness measure we propose is in the spirit of this view, and we show that

it asymptotically corresponds to the Value-at-Risk of out-of-sample utility. We then analyze

how portfolio robustness responds to the presence of near-arbitrage opportunities, which

Kozak, Nagel, and Santosh (2018) define as low-variance principal components that con-

tribute substantially to the maximum squared Sharpe ratio. We theoretically demonstrate

that in-sample near-arbitrage opportunities and OOSU risk are positively correlated, indi-

cating that portfolios that deliver high in-sample Sharpe ratios may not be robust.

In addition, the relation between OOSU risk and near-arbitrage opportunities has impli-

cations for the evaluation of quantitative strategies. Our theory shows that sample strategies

exploiting low-variance principal components to achieve large Sharpe ratios are inherently

riskier due to their larger OOSU risk. This insight is distinct from Harvey and Liu (2014)

who point out that high-Sharpe-ratio trading strategies may exist by chance and not because

they truly provide investors with a skill that will continue to outperform out of sample. In

contrast, our theory does not rule out the existence of high-Sharpe-ratio quantitative strate-

gies, but it highlights the important caveat that OOSU risk increases for strategies that

exploit in-sample near-arbitrage opportunities.

Our third contribution is to propose a novel calibration criterion that exploits our portfo-

lio robustness measure for combining the SMV portfolio with the SGMV portfolio. Using the

analytical characterization of OOSU mean and volatility for shrinkage portfolios, we show

that neither the SMV portfolio nor the SGMV portfolio delivers maximal robustness individ-

ually, and one needs to combine both portfolios to attain an optimal tradeoff between OOSU

mean and volatility. We demonstrate that our robust portfolio assigns a larger tilt toward

the SGMV portfolio than the shrinkage portfolio maximizing OOSU mean. This larger tilt
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Figure 1: Out-of-sample utility efficient frontier

Notes. This figure depicts the out-of-sample utility mean and standard deviation of shrinkage portfolios ŵ?(κ)
that combine the sample global-minimum-variance (SGMV) and sample mean-variance (SMV) portfolios for
different values of κ. The shrinkage intensity κ = 0 corresponds to the SGMV portfolio, and κ = 1 to the
SMV portfolio. The population vector of means and covariance matrix of stock excess returns are calibrated
from the monthly return data of the 25 portfolios of stocks sorted on size and book-to-market. The shrinkage
portfolios are estimated using a sample size of T = 120 months and a risk-aversion coefficient of γ = 3. The
solid blue line corresponds to the efficient tradeoff between out-of-sample utility mean and standard deviation
provided by the shrinkage portfolios whose shrinkage intensity κ is in the interval [κ?

V , κ
?
E ]. The shrinkage

intensity κ?
R maximizes the portfolio robustness measure in Section 6 with λ = 2.

toward the SGMV portfolio allows our robust portfolio to achieve a substantially more stable

out-of-sample performance while sacrificing only a small out-of-sample average performance.

Figure 1 illustrates the main idea of our proposed method. The vertical axis depicts the

OOSU mean of the shrinkage portfolio, and the horizontal axis depicts the OOSU stan-

dard deviation. The parameter κ is the shrinkage intensity that determines the combination

between the SMV and SGMV portfolios. The shrinkage portfolio exploiting κ?E maximizes

OOSU mean and the shrinkage portfolio exploiting κ?R maximizes our proposed measure of

portfolio robustness. Figure 1 shows that the proposed robust shrinkage portfolio exploiting

κ?R decreases OOSU standard deviation by 21% at the expense of only a 5% reduction in

OOSU mean relative to the shrinkage portfolio exploiting κ?E.2

2While Figure 1 considers the true shrinkage intensities, our simulation results show that our proposed
shrinkage intensity κ?

R delivers a more significant improvement in portfolio performance compared to κ?
E

when the shrinkage intensities are unknown and must be estimated.
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Our fourth contribution is to evaluate the out-of-sample performance of our proposed ro-

bust portfolio relative to several benchmarks. Our simulations show that the robust shrinkage

portfolio delivers a better tradeoff between OOSU mean and standard deviation than the

portfolio maximizing only OOSU mean. An appealing feature of our method is that the

robust shrinkage portfolio also delivers a larger OOSU mean than the portfolios specifically

designed to maximize OOSU mean in cases where returns are not Gaussian and shrinkage

intensities are estimated from the data. This result indicates that our proposed portfolio

framework is resilient to estimation errors and model misspecification.

In addition, our simulations confirm our theoretical result that the OOSU risk of sample

portfolios increases when these portfolios exploit in-sample near-arbitrage opportunities. In

particular, we show that sample portfolios that exploit all low-variance principal components

command a substantially larger OOSU risk than portfolios using shrinkage covariance ma-

trices, which attenuate the impact of low-variance principal components on the performance

of estimated portfolios. Inspired by this insight, we employ shrinkage covariance matrices

in the construction of the benchmark strategies and our proposed shrinkage portfolio in the

performance analysis with empirical data.

We study the performance of our robust portfolio on six empirical datasets of monthly

return data. We document that the proposed robust shrinkage portfolio outperforms in terms

of certainty-equivalent return, which corresponds to the empirical out-of-sample utility of

estimated portfolios, and Sharpe ratio. Specifically, for an estimation window of 120 monthly

observations the median improvement in terms of certainty-equivalent return (Sharpe ratio)

net of transaction costs across the six datasets is 79% (29%) relative to the shrinkage portfolio

only maximizing OOSU mean, 151% (30%) relative to the SMV portfolio, 50% (21%) relative

to the SGMV portfolio, 100% (51%) relative to the timing strategy of Kirby and Ostdiek

(2012), and 179% (74%) relative to the equally weighted portfolio. The outperformance of

the robust shrinkage portfolio relative to the benchmark portfolios is similar in magnitude

in the absence of transaction costs. In addition, we use three-year non-overlapping windows

to gauge the stochastic nature of the out-of-sample performance of the considered shrinkage

portfolios. We find that the out-of-sample certainty-equivalent return of our robust portfolio

is larger on average and more stable over time than that of the shrinkage portfolio only
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maximizing OOSU mean.

Our theory also has implications for the evaluation of asset pricing models that define the

stochastic discount factor (SDF) as a linear combination of test assets. In particular, Sec-

tion IA.2 of the Internet Appendix shows that there is a link between the OOSU of shrinkage

portfolios and the out-of-sample R-squared of a particular robust SDF model. Therefore, our

analytical characterization of OOSU risk can be applied to assess the uncertainty of the

out-of-sample R-squared of SDF models. Our theory suggests that SDF models constructed

from many test assets with short time series and that capture near-arbitrage opportunities

will deliver, in general, unreliable results due to their large out-of-sample R-squared risk. In

contrast, SDF models built from our robust approach will deliver more reliable results with

lower out-of-sample R-squared risk.

Our manuscript highlights the value of accounting for out-of-sample performance risk

when evaluating and constructing quantitative investment strategies. On the evaluation front

and in line with the idea that investment strategies should not be judged solely based on

a single past performance realization, financial institutions can use our theory to provide

investors valuable information about performance uncertainty. On the construction side, we

show that sample portfolios that exploit near-arbitrage opportunities in high-dimensional

settings are doomed to experience large OOSU risk. In contrast, portfolios that account for

OOSU risk are more resilient to estimation errors and deliver a more robust performance.

2 Literature review

We build on the literature pioneered by Kan and Zhou (2007) who study the average out-of-

sample utility losses of mean-variance portfolios. Kan and Zhou use their analytical charac-

terization of OOSU mean to build shrinkage portfolios that mitigate the impact of parameter

uncertainty on performance.3 Inspired by the work of Kan and Zhou, an extensive litera-

ture studies the OOSU mean of different sample portfolios to propose new strategies that

3Earlier studies consider out-of-sample utility mean as a portfolio-choice criterion under parameter uncer-
tainty using a Bayesian framework, such as Brown (1976) and Frost and Savarino (1986). However, Kan and
Zhou (2007) are the first to analytically characterize the average out-of-sample utility losses from parameter
uncertainty under the assumption of Gaussian returns.
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improve performance in the presence of parameter uncertainty.4 In contrast to these papers,

our work theoretically characterizes the OOSU standard deviation of sample portfolios and

highlights the relevance of accounting for out-of-sample performance risk in evaluating and

constructing quantitative investment strategies and asset pricing models.

Our work is also related to several papers that study the distribution of out-of-sample

portfolio performance measures. For instance, Kan and Smith (2008) and Kan et al. (2021b)

derive the distribution of the out-of-sample mean return and variance of efficient portfolios,

Kan, Wang, and Zheng (2021a) derive the distribution of the out-of-sample Sharpe ratio

of the sample tangency portfolio, and Yuan and Zhou (2022) derive the distribution of the

out-of-sample Sharpe ratio of several portfolio combinations. We complement these papers

by deriving the asymptotic OOSU distribution of any combination between the SMV and

SGMV portfolios. We also characterize the finite-sample OOSU variance of any combination

of the SMV, SGMV, and equally weighted portfolios. Moreover, unlike these papers, we use

the OOSU mean and volatility to measure the robustness of sample portfolios and derive an

optimal robust shrinkage portfolio. To the best of our knowledge, our work is the first to

exploit out-of-sample performance volatility to construct quantitative investment strategies.

In the portfolio construction front, our work is closely related to the literature that ex-

ploits shrinkage estimators to mitigate the impact of parameter uncertainty.5 Such estimators

are traditionally applied to alleviate the impact of parameter uncertainty affecting the inputs

of the portfolio problem, like the mean (Jorion, 1986; Barroso and Saxena, 2021) and the

covariance matrix (Ledoit and Wolf, 2003, 2004, 2017, 2020). Unlike these papers, we focus

on combining portfolios to attain an optimal tradeoff between OOSU mean and volatility.

The shrinkage portfolios we consider in this manuscript share fundamental elements with

regularization, which is one of the most common machine learning approaches adopted in

4See Zhou (2008), DeMiguel et al. (2009b), Frahm and Memmel (2010), Tu and Zhou (2011), DeMiguel,
Martín-Utrera, and Nogales (2013a, 2015), Branger, Lučivjanská, and Weissensteiner (2019), Kircher and
Rosch (2021), Füss, Koeppel, and Miebs (2021), Kan and Wang (2021), and Kan et al. (2021b).

5A large number of papers propose different approaches to alleviate parameter uncertainty in portfolio
selection using, e.g., Bayesian statistics (Jorion, 1986; Avramov and Zhou, 2010), factor models (De Nard,
Ledoit, and Wolf, 2019), forward-looking information (DeMiguel, Plyakha, Uppal, and Vilkov, 2013b), model
misspecification (Rapponi, Uppal, and Zaffaroni, 2021), robust optimization (Goldfarb and Iyengar, 2003),
sparse estimation (Goto and Xu, 2015; Ao, Li, and Zheng, 2019), and weight constraints (Jagannathan and
Ma, 2003; DeMiguel, Garlappi, Nogales, and Uppal, 2009a; Olivares-Nadal and DeMiguel, 2018).
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the recent asset pricing literature (Giglio, Kelly, and Xiu, 2021; Bryzgalova, Pelger, and

Zhu, 2021). Like regularization, the shrinkage portfolio considered in this manuscript helps

mitigate the impact of sampling volatility on the estimated portfolio weights. We show

that our robust approach to shrinkage portfolios refines and improves the out-of-sample

performance of investment strategies over existing methods.

The shrinkage portfolio approach is not only a practical technique for alleviating the

impact of statistical errors on the performance of estimated portfolios, but it is also an

economically sound method related to the investment-decision problem of ambiguity-averse

investors. In particular, in Section IA.1 of the Internet Appendix, we characterize the exact

relationship between the shrinkage portfolio that combines the SMV and SGMV portfolios

and the ambiguity-averse portfolios considered by Garlappi et al. (2007). We show in closed

form that a larger degree of ambiguity in mean returns leads the ambiguity-averse investor

to apply a larger tilt toward the SGMV portfolio. In line with this theoretical relationship,

our manuscript proposes a method to establish the degree of ambiguity in mean returns that

provides a robust out-of-sample performance.

The proposed robust shrinkage portfolio shares elements with the robust portfolio opti-

mization literature. Goldfarb and Iyengar (2003) show that constructing the portfolio that

is optimal under the worst-case scenario is a powerful technique “to combat the sensitivity

of the optimal portfolio to statistical errors.” Similarly, we show that constructing portfo-

lio combinations that maximize our proposed robustness measure is equivalent to solving a

robust optimization problem where the investor maximizes the worst-case scenario of the un-

known OOSU mean. Therefore, our proposed robust shrinkage portfolio implicitly accounts

for statistical errors affecting the estimation of the OOSU mean.

The theoretical link between the SDF and the returns of mean-variance portfolios allows

us to relate our theory with the cross-sectional asset pricing literature that exploits a linear

combination of test assets to construct an SDF model (Cochrane, 2005; Kozak, Nagel, and

Santosh, 2020). In particular, we show in Section IA.2 of the Internet Appendix that our mea-

sure of OOSU is related to the out-of-sample fit of SDF models. This link allows us to apply

our theory to demonstrate that the out-of-sample fit of models that exploit near-arbitrage

opportunities in the construction of the SDF loadings are unreliable. Our theoretical results
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complement and substantiate the empirical findings of Kozak et al. (2018), who claim that

“in-sample [near-arbitrage opportunities] do not appear to reliably persist out of sample”.

Finally, our work also speaks to the debate on the replicability of finance research (Har-

vey, Liu, and Zhu, 2016). In this debate, academics try to find out-of-sample evidence that

confirms the validity of cross-sectional anomalies (Jensen, Kelly, and Pedersen, 2021). Simi-

lar to this line of research, our work is motivated by the need to create evaluation measures

that assess the out-of-sample robustness of quantitative strategies. Our work addresses this

issue by providing a theory to measure the out-of-sample performance risk of quantitative

strategies that suffer from parameter uncertainty.

3 Mean-variance portfolios

In this section, we review the portfolio framework introduced by Markowitz (1952) where the

investor has mean-variance preferences and knows the true distributional properties of stock

returns. In particular, we assume that the N stock returns in excess of the risk-free rate have

a vector of means µ and a positive-definite covariance matrix Σ. In addition, we impose the

standard constraint that the investor’s wealth is fully allocated to the N risky assets, i.e.,

w>e = 1, where e is the N -dimensional vector of ones and w is a vector of portfolio weights.

Then, the optimal mean-variance portfolio is the solution to the following quadratic program

max
w:w>e=1

U(w) = w>µ− γ

2w
>Σw, (1)

where U(w) is the utility of portfolio w and γ > 0 is the investor’s risk-aversion coefficient.

The solution to problem (1) is

w? = wg + 1
γ
wz, (2)

where wg is the global minimum-variance (GMV) portfolio,

wg = Σ−1e(e>Σ−1e)−1, (3)
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and wz is a zero-cost portfolio (i.e., w>z e = 0) defined as

wz = Bµ, B = Σ−1(I− ew>g ). (4)

For notational simplicity, we define the mean return and variance of the GMV portfolio

wg, and the return variance of the zero-cost portfolio wz, as

µg = w>g µ = µ>Σ−1e(e>Σ−1e)−1, (5)

σ2
g = w>g Σwg = (e>Σ−1e)−1, (6)

ψ2 = w>z Σwz = µ>Σ−1µ− µ2
g/σ

2
g , (7)

respectively. Note that the return variance of the zero-cost portfolio, ψ2 ≥ 0, is equal to the

difference of squared Sharpe ratios of the tangency portfolio and the GMV portfolio. In Sec-

tion 5.4, we show that ψ2 determines the contribution of low-variance principal components

to the maximum attainable Sharpe ratio, and therefore it indicates whether near-arbitrage

opportunities are available to investors.

It is straightforward to show that the utility of the mean-variance portfolio w? is

U(w?) = U(wg) + ψ2

2γ . (8)

Because ψ2/(2γ) is always positive, the optimal mean-variance portfolio always delivers a

higher in-sample utility than the GMV portfolio. However, the mean-variance portfolio’s

in-sample optimality does not hold out of sample because of the estimation errors affecting

the inputs of the portfolio problem. In particular, the impact of estimation errors in the

vector of means on portfolio performance can be severe, as documented in prior literature

(Merton, 1980; Chopra and Ziemba, 1993). Therefore, it is essential to account for parameter

uncertainty in the construction of investment strategies, which we address in the next section.
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4 The distribution of out-of-sample utility

The out-of-sample performance of estimated portfolios is uncertain due to estimation er-

rors, as we note at the end of the previous section. This section sheds new light on the

stochastic nature of portfolio performance by characterizing the asymptotic distribution of

out-of-sample utility of sample portfolios. Section 4.1 lays out the main theoretical assump-

tions. Section 4.2 provides our definition of out-of-sample performance of sample portfolios,

and Section 4.3 derives the asymptotic distribution of the out-of-sample performance of

sample portfolios.

4.1 Theoretical assumptions

Let us consider the time T + 1 portfolio return w>rT+1, where rT+1 is the N -dimensional

vector of stock returns in excess of the risk-free rate with mean µ and positive-definite

covariance matrix Σ. Using historical return data over the past T months (r1, . . . , rT ), the

investor estimates the vector of means µ and covariance matrix of stock returns Σ with their

sample counterparts:

µ̂ = 1
T

T∑
t=1

rt, Σ̂ = 1
T

T∑
t=1

(rt − µ̂)(rt − µ̂)>. (9)

Consistent with prior literature, we make the following two assumptions.

Assumption 1. There are at least two stocks, N ≥ 2, and the sample size is T > N + 7.

Assumption 2. The vector of stock returns at time t, rt, follows a multivariate Gaussian

distribution with vector of means µ and covariance matrix Σ, and all return observations

are independent and identically distributed (iid) over time.

The condition T > N + 7 in Assumption 1 is needed to ensure that the out-of-sample

utility variance derived in Section 5 exists. Assumption 2 is a standard assumption in the

literature used for analytical tractability (Kan and Zhou, 2007; Ao et al., 2019). Under

Assumption 2, µ̂ and Σ̂ are independent and follow a multivariate Gaussian distribution and

Wishart distribution, respectively.
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While it is unlikely that the empirical data follow a Gaussian distribution, there are sev-

eral reasons why Assumption 2 does not compromise the performance of the portfolio strate-

gies that rely on this assumption. First, even when stock returns are non-Gaussian, there is

a close relationship between expected utility and the mean-variance framework (Kroll, Levy,

and Markowitz, 1984; Markowitz, 2014). Second, the economic losses of optimal portfolios

that ignore fat tails in the distribution of stock returns are small, as demonstrated by Tu

and Zhou (2004). Third, our empirical results show that the shrinkage portfolios calibrated

under the assumption of Gaussian returns deliver good out-of-sample performance even for

datasets with empirical return data where returns are likely not Gaussian.

4.2 Sample portfolios and out-of-sample utility

In practice, investors do not know the true vector of means and covariance matrix of stock

returns, and instead, they estimate these parameters from historical return data using the

sample estimates provided in Equation (9). Accordingly, the sample estimate of the mean-

variance portfolio in (2), hereafter the SMV portfolio, is

ŵ? = ŵg + 1
γ
ŵz, (10)

where ŵg is the sample GMV portfolio, hereafter the SGMV portfolio, which is a function

of Σ̂ alone, and ŵz is the sample zero-cost portfolio, which is a function of both µ̂ and Σ̂.

The estimation risk affecting the SMV portfolio leads to suboptimal performance as noted

by DeMiguel et al. (2009b). To combat the impact of parameter uncertainty, we consider

shrinkage techniques, which help mitigate the impact of statistical errors on the performance

of mean-variance portfolios. Indeed, Kan et al. (2021b) show that one can improve the average

out-of-sample performance by combining the SMV portfolio ŵ? with the SGMV portfolio ŵg.

In Appendix IA.1, we show that this combination is also economically sound because it has

a direct connection with the ambiguity-averse portfolios of Garlappi et al. (2007). Similarly,

we consider a linear combination between the SMV and SGMV portfolios determined by the
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shrinkage intensity κ ∈ [0, 1]:

ŵ?(κ) = (1− κ)ŵg + κŵ? with κ ∈ [0, 1]. (11)

Note that the shrinkage portfolio (11) contains as special cases the SMV and SGMV port-

folios for κ = 1 and κ = 0, respectively. For this reason, the theory we develop in this

manuscript for the shrinkage portfolio (11) is applicable to the SMV and SGMV portfolios.6

To evaluate the performance of ŵ?(κ) while accounting for estimation risk, we follow

Kan and Zhou (2007) and define the out-of-sample utility (OOSU) of an estimated portfolio

ŵ?(κ) as

U(ŵ?(κ)) = ŵ?(κ)>µ− γ

2 ŵ
?(κ)>Σŵ?(κ). (12)

Note that because ŵ?(κ) is estimated from a random sample, the OOSU is on its own a

random variable, whose distribution we characterize in the following section.

4.3 Asymptotic distribution of out-of-sample utility

In this section, we characterize the asymptotic distribution of the OOSU for the shrinkage

portfolio defined in Equation (11). The asymptotic distribution is derived as both the sample

size T and the number of assets N go to infinity but their ratio converges to a constant,

similar to the analysis in Ledoit and Wolf (2017), Ao et al. (2019), and Kan et al. (2021a).

This result contains, as a particular case, the asymptotic distribution of the OOSU for the

SMV and the SGMV portfolios when the shrinkage intensity is one and zero, respectively.7

Proposition 1. Let N, T → ∞, N/T → ρ ∈ [0, 1), and Assumption 2 hold. Then, the

out-of-sample utility of the shrinkage portfolio ŵ?(κ) is asymptotically normal,

√
T
(
U(ŵ?(κ))− u(κ, ρ)

)
d→ N (0, v(κ, ρ)), (13)

6In Appendix IA.4.5, we extend our analysis to considering a shrinkage portfolio that combines the SMV
portfolio, the SGMV portfolio, and the equally weighted portfolio as in Tu and Zhou (2011).

7All proofs are available in the Internet Appendix.
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where the asymptotic mean is

u(κ, ρ) = µg −
γ

2
σ2
g

1− ρ + 1
γ

1
1− ρ

(
κψ2 − κ2

2
ψ2 + ρ

(1− ρ)2

)
,

and the asymptotic variance is

v(κ, ρ) = v(0, ρ) + a1(ρ)κ4 + a2(ρ)κ3 + a3(ρ)κ2 + a4(ρ)κ

with

v(0, ρ) =
σ2
gψ

2

1− ρ +
γ2σ4

gρ

2(1− ρ)3 ,

a1(ρ) = (ψ2 + ρ/2)(ρ2 + 3ρ+ 1) + ψ4(2 + ρ/2)
γ2(1− ρ)7 ,

a2(ρ) = −2ψ2(2ψ2 + ρ+ 1)
γ2(1− ρ)5 ,

a3(ρ) = ψ2(4ψ2 + 1)
γ2(1− ρ)3 +

σ2
g(1 + ρ)(ψ2 + ρ)

(1− ρ)5 ,

a4(ρ) = −
2σ2

gψ
2

(1− ρ)3 .

Proposition 1 shows that the OOSU of sample portfolios follows asymptotically a Gaus-

sian distribution. One of the important implications of this result is that the entire distri-

bution can be defined with the first two moments. For instance, as N and T increase with

N/T = ρ ∈ [0, 1), the α-Value-at-Risk (e.g., α = 5%) of OOSU converges to

u(κ, ρ)− λ1−α

√
v(κ, ρ)/T , (14)

where λ1−α is the (1 − α)th percentile of a standard normal distribution. This corresponds

to the portfolio robustness measure we propose in Section 6.

The asymptotic analysis presented in this section is interesting in its own right because

it gives a complete description of the stochastic nature of out-of-sample performance in

high-dimensional settings. Investors can easily exploit the results presented in this section to

assess the performance uncertainty of sample portfolios. In empirical applications, both the
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cross-section and the time-series dimensions are finite. Therefore, in the following section,

we study the finite-sample properties of out-of-sample performance.

5 Finite-sample out-of-sample utility risk

This section studies the OOSU mean and variance of portfolios estimated from finite samples.

In particular, we derive the closed-form analytical expression of the finite-sample OOSU

mean and variance for the shrinkage portfolio defined in Equation (11), which contains as

particular cases the finite-sample OOSU mean and variance of the individual SMV and

SGMV portfolios. We then discuss the monotonicity properties of OOSU variance and shed

light on the connection between near-arbitrage opportunities and OOSU risk.

5.1 Out-of-sample utility mean

In the following proposition, we review some of the main results of Kan et al. (2021b)

concerning the OOSU mean of the shrinkage portfolio ŵ?(κ) in Equation (11).

Proposition 2 (Kan et al. (2021b)). Let Assumptions 1 and 2 hold. Then,

1. The out-of-sample utility mean of the sample GMV portfolio is

E[U(ŵg)] = µg −
γ

2
T − 2

T −N − 1σ
2
g . (15)

2. The out-of-sample utility mean of the shrinkage portfolio ŵ?(κ) is

E[U(ŵ?(κ))] = E[U(ŵg)]

+ 1
γ

T

T −N − 1

(
κψ2 − κ2

(
ψ2 + N − 1

T

)
T (T − 2)

2(T −N)(T −N − 3)

)
. (16)

3. The shrinkage intensity κ?E maximizing out-of-sample utility mean in (16) is

κ?E = (T −N)(T −N − 3)
T (T − 2)

ψ2

ψ2 + N−1
T

∈ [0, 1]. (17)

Finally, κ?E → 1 as T →∞. Thus, ŵ?(κ?E) is a consistent estimator of w?.
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Note that the optimal shrinkage intensity κ?E in Proposition 2 is an oracle estimator that

depends on the unknown parameter ψ2. Kan et al. (2021b) rely on a feasible estimator of

κ?E using the estimator of ψ2 proposed by Kan and Zhou (2007) and find that the resulting

portfolio delivers better out-of-sample performance than a wide range of benchmarks.

In the next section, we extend the analysis of Proposition 2 to study the OOSU variance

of sample portfolios, and we utilize this result to construct robust shrinkage portfolios that

balance OOSU mean and volatility in Section 6, where show that the robust portfolios deliver

a consistently better out-of-sample performance than those that ignore OOSU risk.

5.2 Out-of-sample utility variance

We first define in the following lemma the OOSU variance of any random portfolio, which

we use to obtain the OOSU variance of the shrinkage portfolio defined in Equation (11).

Lemma 1. The out-of-sample utility variance of a random vector of portfolio weights ŵ is

V[U(ŵ)] = V
[
ŵ>µ

]
+ γ2

4 V
[
ŵ>Σŵ

]
− γCov

[
ŵ>µ, ŵ>Σŵ

]
. (18)

In the following proposition, we apply Lemma 1 to derive the closed-form analytical

expression of the OOSU variance of the shrinkage portfolio defined in Equation (11).8

Proposition 3. Let Assumptions 1 and 2 hold. Then, the out-of-sample utility variance of

the shrinkage portfolio ŵ?(κ) is

V[U(ŵ?(κ))] = V[U(ŵg)] + ∆(κ), (19)

where

V[U(ŵg)] =
σ2
gψ

2

T −N − 1 +
γ2σ4

g(N − 1)(T − 2)
2(T −N − 1)2(T −N − 3) (20)

is the out-of-sample utility variance of the sample GMV portfolio and ∆(κ) is a fourth-degree

polynomial in κ,

∆(κ) = a1κ
4 + a2κ

3 + a3κ
2 + a4κ, (21)

8We are thankful to Raymond Kan for his helpful feedback, which helped us obtain our main result in
this section.
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with the coefficients (a1, a2, a3, a4) being functions of γ, T , N , σ2
g , and ψ2:

a1 = 1
2γ2

T 2(T − 2)C(T,N, ψ2)
(T −N)2(T −N − 1)2(T −N − 2)(T −N − 3)2(T −N − 5)(T −N − 7) , (22)

a2 = − 2ψ2

γ2
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) , (23)

a3 = ψ2

γ2
2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)

(T −N)(T −N − 1)2(T −N − 3)

+ σ2
g

T (T − 2)(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) , (24)

a4 = − 2σ2
gψ

2 T (T − 2)
(T −N − 1)2(T −N − 3) , (25)

where

C(T,N, ψ2) = (2Tψ2 +N − 1)(N4 +N3T − 3N3 − 4N2T 2 + 22N2T − 31N2 +NT 3

− 7NT 2 + 13NT − 5N + T 4 − 12T 3 + 53T 2 − 100T + 70) + T 2ψ4(N3

+ 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70).

Note from Proposition 3 that the OOSU variance of the shrinkage portfolio only depends

on six parameters: the shrinkage intensity κ, the investor’s risk-aversion coefficient γ, the

number of stocks N , the sample size T , the return variance of the GMV portfolio σ2
g , and

the return variance of the zero-cost portfolio ψ2. We now use the analytical expression of

OOSU variance in Proposition 3 to obtain the following Corollary.

Corollary 1. Provided that ψ2 is strictly positive, there is a nonzero shrinkage intensity κ ∈

(0, 1) for which the shrinkage portfolio ŵ?(κ) delivers a lower out-of-sample utility variance

than that of the SMV and SGMV portfolios.

Corollary 1 demonstrates that neither the SMV portfolio nor the SGMV portfolio delivers,

individually, the lowest OOSU variance, and it is optimal to combine them to minimize OOSU

variance in (19). We illustrate this point in Figure 1, where we depict in the horizontal axis the

OOSU standard deviation of different shrinkage portfolios using the closed-form expression

obtained in Proposition 3. We see that for the case considered in Figure 1, the shrinkage

intensity that minimizes OOSU variance is κ?V = 0.0147 > 0.
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5.3 Monotonicity properties of out-of-sample utility variance

We now study the monotonicity properties of the OOSU variance of the shrinkage portfolio

in (11), which we highlight in the following proposition.

Proposition 4. The out-of-sample utility variance of the shrinkage portfolio ŵ?(κ)

1. decreases with the sample size T and converges to zero as T →∞,

2. increases with the number of stocks N , the return variance of the GMV portfolio σ2
g , the

return variance of the zero-cost portfolio ψ2, and the shrinkage intensity κ if κ ≥ κ?E.9

Proposition 4 provides the intuitive result that the OOSU risk of sample portfolios is

substantial in high-dimensional settings where the number of assets N is large relative to

the sample size T . Moreover, OOSU volatility increases with parameters σ2
g and ψ2, which

are the return variances of the GMV portfolio wg and the zero-cost portfolio wz, respectively.

Finally, Proposition 4 shows that for a shrinkage intensity κ ≥ κ?E, the substantial exposure

to the SMV portfolio leads to an increasing OOSU volatility as we increase κ. Therefore, κ

needs to be smaller than κ?E in order to reduce OOSU volatility.

Figure 2 illustrates the results in Proposition 4. For conciseness, we only show the results

for the sample size T and the number of stocks N . We calibrate the distributional parameters

using the sample moments of the 25SBTM dataset. This gives a value of σg = 0.0437 and a

value of ψ2 = 0.0625. In addition, we set a risk-aversion coefficient of γ = 3. In the left Panel,

we vary T while keeping a fixed N = 25. In the right Panel, we vary N while keeping a fixed

T = 120. We study the OOSU volatility of the SGMV portfolio and the SMV portfolio.

The left Panel in Figure 2 shows that the OOSU standard deviation of the SMV portfolio

is substantially larger than that of the SGMV portfolio. Specifically, for a realistic sample

size of T = 120 monthly observations, the monthly OOSU standard deviation of the SMV

portfolio is approximately 3.34%, which is 29 times larger than that of the SGMV portfolio.

Additionally, consistent with Proposition 4, we observe that the OOSU standard deviation

decreases with the sample size. However, it is worth noting that the SMV portfolio requires

9This is a sufficient but not necessary condition.
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Figure 2: Effect of sample size and number of stocks on out-of-sample utility volatility

Notes. This figure depicts the out-of-sample utility standard deviation of the SGMV portfolio (κ = 0, dashed
blue line) and the SMV portfolio (κ = 1, solid red line). The population vector of means and covariance
matrix of stock excess returns are calibrated from the monthly return data of the 25 portfolios of stocks
sorted on size and book-to-market. We set a risk-aversion coefficient of γ = 3. We vary the sample size T in
the left panel while keeping a fixed N = 25, and we vary the number of stocks N in the right panel while
keeping a fixed T = 120. The values in the right panel are in log-scale for visibility.

an unrealistically large sample size of T = 13,340 monthly observations to have a smaller

OOSU volatility than the SGMV portfolio.

The right Panel in Figure 2 shows that OOSU standard deviation increases with the

number of stocks N as demonstrated in Proposition 4. The effect of the number of stocks N

is particularly severe for the SMV portfolio, for which we see that OOSU volatility increases

much more rapidly than for the SGMV portfolio.

5.4 Relation with near-arbitrage opportunities

In Section 5.3, we derive the monotonicity properties of OOSU variance for any combination

of the SMV and SGMV portfolios. We now use these results to discuss the connection between

OOSU risk and near-arbitrage opportunities. First, we introduce the following assumption

for tractability, which is also employed by Kozak et al. (2018).

Assumption 3. Consider the eigenvalue decomposition of the covariance matrix of stock

returns, Σ = VDV>, where D = diag(d1, . . . , dN) is the diagonal matrix of eigenvalues,

and V = [v1, . . . , vN ] is the matrix of eigenvectors. We assume that the first eigenvector is

proportional to the equally weighted portfolio, that is, v1 = e/
√
N .

Assumption 3 indicates that the main driver of stock-return variation, i.e., the first eigen-
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vector of the return covariance matrix, is proportional to the equally weighted portfolio. This

is a mild assumption because, in unreported results, we show that empirically the first prin-

cipal component of stock returns is highly correlated with the returns of the equally weighted

portfolio, with a correlation of nearly 100% across the six datasets we consider in our analysis.

The following proposition employs Assumption 3 to decompose the return variance of the

zero-cost portfolio, ψ2 in (7), as the sum of squared Sharpe ratios of low-variance principal

components.

Proposition 5. Let Assumption 3 hold. Then, the return variance of the zero-cost portfolio

is

ψ2 =
N∑
i>1

SR2
PCi

, (26)

where SRPCi
= v>i µ/

√
di is the Sharpe ratio of the ith principal component of stock returns.

Proposition 5 reveals that ψ2 is determined by the squared Sharpe ratios of low-variance

principal components, and thus, a large value of ψ2 indicates the presence of near-arbitrage

opportunities. Kozak et al. (2018) document that if there are low-variance principal com-

ponents with substantial contribution to the overall performance of the tangency portfolio,

these near-arbitrage opportunities are hard to exploit out of sample. Moreover, Kozak et al.

(2020, p.278) cast doubt on the existence of large values of ψ2 because they argue that “[it is]

implausible that a principal component with low eigenvalue could contribute substantially

to the volatility of the SDF and hence to the overall maximum squared Sharpe ratio.” Our

theoretical result in Proposition 4 that the OOSU variance of sample portfolios increases

with ψ2 complements and substantiates these claims. Specifically, even though our results

do not suggest that it is implausible to find near-arbitrage opportunities, we show they are

risky because they imply higher out-of-sample performance volatility.

Finally, from an investment perspective it is interesting to understand whether quantita-

tive strategies exploiting in-sample near-arbitrage opportunities are subject to higher OOSU

risk. The following proposition addresses this concern.

Proposition 6. Let Assumptions 1 and 2 hold. Then, provided that T > N+9, the covariance

between ψ̂2 = µ̂>Σ̂−1µ̂− (µ̂g/σ̂g)2 and (U(ŵ(κ))−E[U(ŵ(κ))])2 exists and is always positive.
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Proposition 6 demonstrates that sample portfolios exploiting in-sample near-arbitrage

opportunities will face larger OOSU risk because the in-sample measure of near-arbitrage

opportunities, ψ̂2, covaries positively with the squared OOSU deviations from the OOSU

mean of the shrinkage portfolio that combines the SMV and SGMV portfolios.

6 A new portfolio robustness measure

We now use the results in Section 5 to propose a new portfolio robustness measure defined

as the difference between OOSU mean and a multiple of OOSU standard deviation. For

notational simplicity, our presentation focuses on the more general shrinkage portfolio that

combines the SMV and the SGMV portfolios. Section 6.1 introduces the robustness measure.

Section 6.2 studies the shrinkage portfolio that optimizes the proposed robustness measure.

Section 6.3 explains how we estimate the shrinkage intensities. Section 6.4 describes the

monotonicity properties of the robustness measure. Finally, Section 6.5 relates our proposed

metric to the literature on robust optimization.

6.1 A new robustness measure

In our view, a robust portfolio should deliver good average performance and also a stable

performance. In line with this view, we define the portfolio robustness measure for a given es-

timated portfolio ŵ as the difference between OOSU mean and a multiple of OOSU standard

deviation:

R(ŵ) = E[U(ŵ)]− λ
√
V[U(ŵ)], (27)

where λ ≥ 0 determines the weight that OOSU risk has on our robustness measure. Note

that for λ = 0, we recover the OOSU mean criterion proposed by Kan and Zhou (2007). We

dub our robustness measure the mean-risk OOSU. Our proposed mean-risk OOSU measure

captures our view of portfolio robustness, and maximizing this metric delivers an efficient

tradeoff between OOSU mean and standard deviation. In addition, the result in Proposition 1

demonstrates that the robustness measure we propose in this section converges to the F (−λ)-

Value-at-Risk of the OOSU distribution of the shrinkage portfolio (11) when N and T go to
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infinity, and the ratio N/T converges to a value in the interval [0,1).10 Therefore, maximizing

our proposed robustness measure minimizes asymptotically the left-tail risk in the out-of-

sample utility of estimated portfolios.

6.2 The robust optimal portfolio

We now define our robust shrinkage portfolio that combines the SMV and SGMV portfolios

to maximize the mean-risk OOSU measure defined in Section 6.1. Formally, the intensity of

the robust shrinkage portfolio is the solution to the following problem:

κ?R = arg max
κ∈[0,1]

R(ŵ?(κ)). (28)

Problem (28) can be easily solved numerically using the analytical expressions for the OOSU

mean in (16) and for the OOSU variance in (19). Note that we recover κ?R = κ?E when λ = 0

and κ?R = κ?V when λ→∞, where κ?V is the shrinkage intensity minimizing OOSU variance.

Our measure of portfolio robustness resembles the efficient frontier of Markowitz (1952).

In our case, instead of obtaining the combination of stocks that achieves the optimal tradeoff

between mean return and variance, we obtain the combination of estimated portfolios that

achieves the optimal tradeoff between OOSU mean and variance. Figure 1 depicts the OOSU

efficient frontier for the 25SBTM dataset, T = 120, and γ = 3. First, note that the shrinkage

intensity κ?E proposed by Kan et al. (2021b) delivers the portfolio on the OOSU efficient

frontier that maximizes OOSU mean. Second, we observe that the shrinkage portfolio that

maximizes the mean-risk OOSU metric with λ = 2 delivers an OOSU standard deviation

21% lower than that of the shrinkage portfolio maximizing OOSU mean. To achieve this

substantial reduction in OOSU risk, the shrinkage portfolio that exploits κ?R only sacrifices a

small OOSU mean of 5.3% relative to the shrinkage portfolio that exploits κ?E. Accordingly,

our proposed robust shrinkage approach can deliver portfolios with a stable out-of-sample

performance that perform well on average.

In the following proposition, we formally prove two important properties of the shrinkage

intensity κ?R.

10F (x) is the cumulative distribution function of the standardized OOSU of the shrinkage portfolio.
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Figure 3: Monotonicity properties of optimal shrinkage intensities

Notes. This figure depicts the shrinkage intensity κ?
E maximizing out-of-sample utility mean (dotted red

line), and the shrinkage intensity κ?
R maximizing the portfolio robustness measure in (27) (solid blue line),

for different values of the six parameters that influence the portfolio robustness measure introduced in
Section 6.1. The population vector of means and covariance matrix of excess returns are calibrated from the
monthly return data of the 25 portfolios of stocks sorted on size and book-to-market. The base-case values
of the six parameters are T = 120, N = 25, σg = 0.0437, ψ2 = 0.0625, γ = 3, and λ = 2. In each plot, we
change the value of one of these six parameters while keeping the other five equal to the base-case value. In
the bottom-right plot, κ?

V is the shrinkage intensity minimizing out-of-sample utility variance.

Proposition 7. Let Assumptions 1 and 2 hold. Then, the shrinkage intensity κ?R solving

(28) has the following properties:

1. κ?R → 1 as T →∞. Thus, ŵ?(κ?R) is a consistent estimator of w?.

2. κ?V ≤ κ?R ≤ κ?E, where κ?V minimizes the out-of-sample utility variance and κ?E maxi-

mizes the out-of-sample utility mean of the shrinkage portfolio, respectively.

The first result of Proposition 7 shows that our proposed robust shrinkage portfolio is

asymptotically optimal. The second result of Proposition 7 demonstrates that while an in-

vestor facing parameter uncertainty can increase her average OOSU by shrinking the SMV

portfolio toward the SGMV portfolio, a more substantial shrinkage toward the SGMV port-

folio is needed to reduce OOSU variance further and enhance portfolio robustness. Using the

23



insight in Corollary 1 that κ?V > 0 if ψ2 > 0, the second result of Proposition 7 also implies

that neither the SMV portfolio nor the SGMV portfolio optimizes our proposed measure of

portfolio robustness and, hence, it is necessary to combine them using intensity κ?R to achieve

the maximal robust performance.

In Figure 3, we illustrate the monotonicity properties of the optimal shrinkage intensity

κ?R that maximizes the mean-risk OOSU measure. We calibrate the parameters required to

obtain the optimal shrinkage intensity using the 25SBTM dataset. In particular, we have

N = 25, ψ2 = 0.0625, and σg = 0.0437. In addition, we set T = 120, γ = 3, and λ = 2. We

then change one parameter at a time to study the monotonicity properties of κ?R.

We observe from Figure 3 that both κ?E and κ?R increase with T and decrease with N .

This result is intuitive because statistical errors affecting the estimated moments of stock

returns decrease with the ratio T/N and, thus, less shrinkage toward the SGMV portfo-

lio is necessary when this ratio increases. Also, the difference between κ?E and κ?R becomes

smaller as T increases because they both converge to one as T goes to infinity. Second, while

κ?E is independent of σg, the proposed shrinkage intensity κ?R increases with σg because, as

the return volatility of the GMV portfolio increases, shrinking toward the SGMV portfolio

becomes less attractive in terms of OOSU risk. Third, we observe that both shrinkage inten-

sities increase with ψ2, but κ?R increases less rapidly because as shown in Proposition 4, the

OOSU standard deviation of the shrinkage portfolio increases with ψ2. Fourth, while κ?E is

independent of γ, the proposed shrinkage intensity κ?R increases with γ and gets closer to κ?E.

This is because as γ increases, the exposure to sample mean returns decreases, and this has

the effect of reducing OOSU standard deviation, which gives more relevance to the OOSU

mean in the mean-risk OOSU measure. Fifth, as the coefficient λ increases, the OOSU stan-

dard deviation of the shrinkage portfolio becomes a more relevant element of the mean-risk

OOSU criterion. Therefore, the shrinkage intensity κ?R converges to κ?V as λ increases. This

insight is consistent with our second result in Proposition 7.

6.3 Estimation of optimal shrinkage intensities

The optimal shrinkage intensity κ?R maximizing the mean-risk OOSU of the shrinkage port-

folio depends on the true moments of stock returns via σ2
g and ψ2. Similarly, the shrinkage
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intensity κ?E maximizing OOSU mean depends on parameter ψ2. Since these parameters are

unknown, Section IA.3 of the Internet Appendix studies estimators of these parameters that

are statistically consistent. Specifically, we estimate ψ2 with the estimator of Kan and Zhou

(2007). Moreover, we estimate σ2
g via the estimator of Frahm and Memmel (2010), which cor-

responds to the sample return variance of the shrinkage portfolio that combines the equally

weighted and SGMV portfolios to minimize expected out-of-sample variance. In the rest of

the manuscript, we denote the estimated intensities that exploit the consistent estimators of

ψ2 and σ2
g as κ̂?R and κ̂?E.11

6.4 Monotonicity properties of the robustness measure

In the following proposition, we provide some monotonicity properties for the mean-risk

OOSU measure of the shrinkage portfolio (11).

Proposition 8. The mean-risk out-of-sample utility of the shrinkage portfolio ŵ?(κ)

1. increases with the sample size T and the mean return of the GMV portfolio µg,

2. decreases with the number of stocks N , the return variance of the GMV portfolio σ2
g ,

and the shrinkage intensity κ if κ ≥ κ?E,

3. increases with ψ2 at a smaller rate as λ increases, i.e., ∂2

∂ψ2∂λ
R(ŵ?(κ)) < 0.

Proposition 8 demonstrates that the mean-risk OOSU measure increases with T and

decreases with N . This is a desirable property of our proposed robustness metric because

increasing T and decreasing N reduces the statistical errors affecting the estimated moments

of stock returns and their impact on sample portfolios. Moreover, the mean-risk OOSU

measure increases with µg because the OOSUmean increases with µg and the OOSU standard

deviation is independent of µg. On the contrary, the mean-risk OOSU decreases with σ2
g

because the OOSU mean is decreasing in σ2
g , and the OOSU standard deviation is increasing

in σ2
g as shown in Proposition 4. Proposition 8 also demonstrates that allocating more weight

11The result in Part 2 of Proposition 7 holds for any value of σ2
g and ψ2, hence the estimated shrinkage

intensities also obey the inequality κ̂?
R ≤ κ̂?

E . Moreover, they remain asymptotically optimal.
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to the SMV portfolio than κ?E necessarily deteriorates the mean-risk OOSU measure, which

is why κ?R ≤ κ?E as highlighted in Proposition 7.

Finally, Proposition 8 also shows that increasing the coefficient λ mitigates the impact

that parameter ψ2 has on the robustness measure. This is because while ψ2 generally has

a positive impact on OOSU mean,12 it also positively impacts OOSU volatility. Therefore,

the near-arbitrage opportunities captured by parameter ψ2 do not represent a free-lunch to

investors because while average out-of-sample performance may increase, it also becomes

riskier. This is captured by our proposed mean-risk OOSU measure and explains why the

robust shrinkage intensity κ?R does not increase with ψ2 as fast as κ?E in Figure 3.

6.5 Relation to robust optimization

In this section, we interpret our proposed mean-risk OOSU criterion through the lenses

of robust optimization.13 Under this approach, the mean-variance investor is averse to the

ambiguity around the true, but unknown, OOSU mean and maximizes the worst-case scenario

assuming that the true OOSU mean lies within a bounded region. In particular, we assume

that the true OOSU mean belongs to the following uncertainty set:

S(λ, κ) =
{
x ∈

[
Ê[U(ŵ?(κ))]− λ

√
V̂[U(ŵ?(κ))], Ê[U(ŵ?(κ))] + λ

√
V̂[U(ŵ?(κ))]

]}
, (29)

where Ê[U(ŵ?(κ))] and V̂[U(ŵ?(κ))] are the estimated OOSU mean and variance of the

shrinkage portfolio ŵ?(κ). Note that in this case parameter λ ≥ 0 determines the level

of uncertainty around the OOSU mean. The uncertainty set in (29) can be interpreted as

a confidence interval similar to Garlappi et al. (2007). Accordingly, an ambiguity-averse

investor who wants to maximize OOSU mean solves the robust optimization problem

max
κ∈[0,1]

min
S(λ,κ)

E[U(ŵ?(κ))] = max
κ∈[0,1]

Ê[U(ŵ?(κ))]− λ
√
V̂[U(ŵ?(κ))]. (30)

12Specifically, OOSU mean in (16) increases with ψ2 if κ ≤ 2(T −N)(T −N − 3)/(T (T − 2)).
13There is extensive literature on robust optimization and portfolio theory. One of the most prominent

papers in this literature is Goldfarb and Iyengar (2003).
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Problem (30) delivers our estimated robust shrinkage intensity, i.e., κ̂?R. Therefore, our

methodology implicitly accounts for the estimation errors in OOSU mean, which can contam-

inate the estimated shrinkage intensity that maximizes OOSU mean and deteriorate portfolio

performance (Kan and Wang, 2021). We confirm this finding in the simulation analysis of

Section 7.2, where we find that our robust shrinkage portfolio often delivers a larger OOSU

mean than that of the shrinkage portfolio that is designed to maximize OOSU mean.

7 Performance analysis

In this section, we characterize the economic benefits from exploiting our measure of port-

folio robustness in the construction of quantitative strategies. In particular, we compare the

performance of our robust shrinkage portfolio with that of several other benchmark port-

folio strategies. In Section 7.1, we describe the data used in the performance analysis. In

Section 7.2, we evaluate the performance of our strategy using simulated data and we em-

pirically assess the relationship between OOSU risk and near-arbitrage opportunities. In

Section 7.3, we evaluate the performance of our strategy using empirical data.

7.1 Data

We use the monthly excess returns of six datasets. The first four datasets are downloaded

from Kenneth French’s website: (i) 10 momentum portfolios (10MOM ) from January 1927

through December 2019, (ii) 25 portfolios formed on size and book-to-market (25SBTM )

from January 1927 through December 2019, (iii) 25 portfolios formed on operating prof-

itability and investment (25OPINV ) from July 1963 through December 2019, (iv) 49 indus-

try portfolios (49IND) from July 1969 through December 2019. The last two datasets come

from the 23 anomalies considered by Novy-Marx and Velikov (2016) and are downloaded

from Robert Novy-Marx’s website: (v) the long and short legs of eight low-turnover anoma-

lies (16LTANOM ) from July 1963 through December 2013 and (vi) the long and short legs

of all the 23 anomalies (46ANOM ) from July 1973 through December 2013.14

14We thank Kenneth French and Robert Novy-Marx for making their data publicly available.
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7.2 Simulated returns

We use two different methods to simulate monthly return data. In the first method, we draw

observations from a Gaussian distribution. In the second method, our return data is not

Gaussian, and instead, we simulate data using the bootstrap method of Efron (1979). For

the construction of the simulated data, we use the six datasets described in Section 7.1.

We now explain how we construct the Gaussian simulated returns. For each of the six

empirical datasets, we compute the sample vector of means µ̂ and sample covariance matrix

Σ̂ employing the entire sample, and use these sample estimates as the population parameters

of a multivariate Gaussian distribution N (µ̂, Σ̂) from which we draw T observations, where

T ∈ (120, 180, 240). We construct M = 100,000 simulated datasets of T observations using

this method and compute the estimated shrinkage portfolio ŵm(κ̂m) for each of the M

simulated datasets. Then, the OOSU mean, OOSU variance, and mean-risk OOSU of the

estimated shrinkage portfolio ŵ?(κ̂) are approximated as

E[U(ŵ?(κ̂))] ≈ 1
M

M∑
m=1

U(ŵ?m(κ̂m)), (31)

V[U(ŵ?(κ̂))] ≈ 1
M

M∑
m=1

(U(ŵ?m(κ̂m))− E[U(ŵ?(κ))])2, (32)

R(ŵ?(κ̂)) ≈ E[U(ŵ?(κ̂))]− λ
√
V[U(ŵ?(κ̂))], (33)

where U(ŵ?m(κ̂m)) is the investor’s out-of-sample utility defined as in Equation (12) of the

estimated shrinkage portfolio ŵ?m(κ̂m) obtained from the mth simulated dataset. We set the

risk-aversion coefficient to γ = 3 as in Kan and Zhou (2007) and Kan et al. (2021b) and

we set the coefficient λ to λ = 2, and therefore the robustness measure we consider in the

performance analysis is asymptotically equivalent to the 2.5%-Value-at-Risk of OOSU as

shown in Section 4.3.15

The simulation with Gaussian data is interesting because the theoretical results rely on

the assumption that stock returns are iid multivariate Gaussian; see Assumption 2. However,

this assumption does not hold in practice, and therefore, the second type of simulated data

15In unreported results, we confirm that using different values of λ provides similar insights.
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is obtained by bootstrapping return data from the original sample. In particular we create

1,000 bootstrap samples of 2T return observations, where T ∈ (120, 180, 240). For each

bootstrap sample of 2T observations, we use the first half to estimate the shrinkage portfolio

and evaluate its performance in the second half of the sample. We compute the OOSU

mean, variance, and the mean-risk OOSU as in Equations (31)–(33) from the 1,000 OOSU

observations obtained from the 1,000 bootstrap samples.

Panel A of Table 1 reports the OOSU mean, standard deviation, and the mean-risk OOSU

for the simulated Gaussian data. We consider the shrinkage portfolio with the estimated

intensity κ̂?E that maximizes OOSU mean and the shrinkage portfolio with the estimated

intensity κ̂?R that maximizes our proposed robustness measure with λ = 2. We observe that

for a sample size of T = 120 observations, the shrinkage portfolio that exploits κ̂?R delivers a

larger OOSU mean than that of the shrinkage portfolio exploiting κ̂?E for four datasets. This

suggests that κ̂?R emerges as a robust shrinkage intensity that is subject to lower estimation

risk than κ̂?E, which allows our robust shrinkage portfolio to outperform in terms of OOSU

mean the shrinkage portfolio designed to optimize it. Indeed, in unreported results, we find

that the estimated κ̂?E has a larger sampling variability than κ̂?R and, hence, the shrinkage

portfolio exploiting κ̂?E is more sensitive to estimation errors. In addition, we observe that

the shrinkage portfolio that exploits κ̂?E delivers an OOSU that is notably more volatile

than that of the shrinkage portfolio that exploits κ̂?R. The difference is particularly large for

the case with a sample size of T = 120 observations. Accordingly, the shrinkage portfolio

that exploits the intensity κ̂?E delivers a smaller mean-risk OOSU than that obtained by the

shrinkage portfolio that exploits κ̂?R.16

Panel B of Table 1 reports the performance of the two shrinkage portfolios in the boot-

strap experiment. In terms of OOSU mean, we see that the shrinkage portfolio exploiting κ̂?R
performs remarkably better. Specifically, it outperforms the shrinkage portfolio exploiting

κ̂?E in five out of six datasets across all sample sizes. In addition, the shrinkage intensity κ̂?E
yields an OOSU volatility that is, on average across all datasets, 32%, 24%, and 21% larger

than that of κ̂?R for T = 120, 180, and 240 months, respectively. The results in this panel

16In unreported results, we show that the shrinkage portfolio constructed with κ̂?
R outperforms the SMV

and SGMV portfolios in terms of OOSU mean, OOSU standard deviation, and mean-risk OOSU.

29



Figure 4: Density of monthly out-of-sample utility in simulated data

Notes. This figure depicts the monthly out-of-sample utility densities of the estimated shrinkage portfolios
maximizing out-of-sample utility mean (κ̂?

E , in red) and the portfolio robustness measure in Section 6 (κ̂?
R,

in blue). The top figures depict the density function of the out-of-sample utilities of the shrinkage portfolios
from the 100,000 simulated samples of T observations drawn from a multivariate Gaussian distribution whose
moments are calibrated from the dataset of monthly excess returns of 25 portfolios of stocks sorted on size
and book-to-market. The bottom plots are obtained by bootstrapping (with replacement) 1,000 samples of
2T observations from the dataset of 25 portfolios of stocks sorted on size and book-to-market, where the
first half of the bootstrap sample is used to estimate the two shrinkage portfolios and the second half is used
to evaluate the out-of-sample utility of the shrinkage portfolios estimated in the first half of the sample. We
consider a sample size of T = 120 and 240 monthly observations, a risk-aversion coefficient of γ = 3, and a
coefficient λ = 2 for the portfolio robustness measure.

suggest that the performance of the shrinkage portfolio exploiting κ̂?E deteriorates relative

to that of the robust portfolio when the data is not Gaussian.

Figure 4 depicts the OOSU density of the estimated shrinkage portfolios for the simulated

return data that uses the 25SBTM dataset. The figure shows that, when the sample size is

T = 120 or when the data is not Gaussian, the shrinkage portfolio that exploits κ̂?R has a

larger OOSU mean and a smaller OOSU volatility than the shrinkage portfolio exploiting

κ̂?E. In addition, the OOSU density of the shrinkage portfolio exploiting κ̂?E has a heavier left

tail than that of the shrinkage portfolio exploiting κ̂?R. This result is consistent with the idea

that our robust portfolio minimizes the tail risk of OOSU given the connection that we draw
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in Section 6.1 between our proposed robustness measure and the asymptotic Value-at-Risk

of OOSU. The lower downside risk offered by our robust shrinkage portfolio represents an

additional advantage of our proposed methodology.

Finally, we consider an extra source of portfolio robustness by shrinking the sample

covariance matrix toward the identity as in Ledoit and Wolf (2004). In particular, we consider

the following shrinkage covariance matrix:

Σ̂sh = (1− δ)Σ̂ + δσ̄2I, (34)

where σ̄2 is the cross-sectional average of asset-return variances and δ is the shrinkage in-

tensity. The eigenvalue decomposition of this shrinkage covariance matrix is

Σ̂sh = V̂
(
(1− δ)D̂ + δσ̄2I

)
V̂ >, (35)

where V̂ and D̂ are the matrix of eigenvectors and the diagonal matrix of eigenvalues,

respectively, obtained from Σ̂. Taking the derivative of the eigenvalues dsh,i’s of the shrinkage

covariance matrix with respect to the shrinkage intensity δ gives

∂dsh,i

∂δ
=
∂
(
(1− δ)d̂i + δσ̄2

)
∂δ

= σ̄2 − d̂i, (36)

where d̂i is the ith eigenvalue of Σ̂. Expression (36) indicates that shrinking the covariance

matrix toward the identity will increase the eigenvalues of the sample covariance matrix,

provided that σ̄2 − d̂i > 0, and this effect will be larger among the lowest eigenvalues.

Therefore, by shrinking the sample covariance matrix we attenuate the impact that low-

variance principal components have on the out-of-sample performance of sample portfolios.

In Figure 5, we exploit the shrinkage covariance matrix (34) to illustrate the impact

that low-variance principal components have on the OOSU risk and robustness of the SMV

portfolio. For each dataset, we draw 10,000 bootstrap samples of 2T observations, where

T = 120. We estimate the SMV portfolio exploiting the shrinkage covariance matrix Σ̂sh

using the first T observations. Then, we evaluate the OOSU of this portfolio with γ = 3 in

the second half of the sample. The left axis plots OOSU risk, which is the standard deviation
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Figure 5: Shrinkage covariance matrix and out-of-sample utility of SMV portfolio

Notes. This figure depicts the out-of-sample utility standard deviation (left axis) and the portfolio robustness
measure in Section 6 (right axis) for the sample mean-variance (SMV) portfolio as a function of the intensity
with which the sample covariance matrix is shrunk toward the identity. More precisely, we use the covariance
matrix Σ̂sh = (1 − δ)Σ̂ + δσ̄2I where σ̄2 is the cross-sectional average of asset-return variances and δ
is the shrinkage intensity. For each dataset, we draw 10,000 bootstrap samples of 2T observations (with
replacement), where T = 120. We estimate the SMV portfolio using the first T observations and the shrinkage
covariance matrix Σ̂sh. Then, we evaluate the OOSU of this portfolio in the second half of the sample. Finally,
we compute the OOSU risk and robustness of the SMV portfolio across the 10,000 bootstrap samples. We
run this experiment for a shrinkage intensity δ between zero and one. We consider a risk-aversion coefficient
of γ = 3 and a coefficient λ = 2 for the portfolio robustness measure.

of the OOSU of the SMV portfolio across all 10,000 bootstrap samples. Similarly, the right

axis plots the mean-risk OOSU with λ = 2. We run this experiment for different values of

the shrinkage intensity δ ∈ [0, 1].

Even though low-variance principal components help improve in-sample performance

(Kozak et al., 2018), the empirical exercise in Figure 5 corroborates the results in Proposi-

tions 4 and 5 that exploiting low-variance principal components contributes to having larger

OOSU risk. Moreover, Figure 5 also shows that shrinking the sample covariance matrix helps

decrease OOSU risk and increase the robustness of SMV portfolios. In addition to the pre-

vious analysis, we are also interested in whether shrinking the sample covariance matrix can
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Figure 6: Shrinkage covariance matrix and out-of-sample utility of shrinkage portfolios

Notes. This figure depicts the out-of-sample utility mean of the shrinkage portfolio exploiting κ̂?
E (left axis)

and the portfolio robustness measure in Section 6 of the shrinkage portfolio exploiting κ̂?
R (right axis) as

a function of the intensity with which the sample covariance matrix is shrunk toward the identity. More
precisely, we use the covariance matrix Σ̂sh = (1 − δ)Σ̂ + δσ̄2I where σ̄2 is the cross-sectional average of
asset-return variances and δ is the shrinkage intensity. For each dataset, we draw 10,000 bootstrap samples of
2T observations (with replacement), where T = 120. We estimate the two shrinkage portfolios using the first
T observations and the shrinkage covariance matrix Σ̂sh. Then, we evaluate the OOSU of the two portfolios
in the second half of the sample. Finally, we compute the OOSU mean and robustness across the 10,000
bootstrap samples. We run this experiment for a shrinkage intensity δ between zero and one. We consider a
risk-aversion coefficient of γ = 3 and a coefficient λ = 2 for the portfolio robustness measure.

further improve the performance of shrinkage portfolios that optimally combine the SMV

and SGMV portfolios.

Figure 6 illustrates this by depicting the relationship between the shrinkage intensity of

the covariance matrix and the out-of-sample performance of the shrinkage portfolios that op-

timally combine the SMV and SGMV portfolios. For the shrinkage portfolio that maximizes

OOSU mean (i.e., using intensity κ̂?E), we depict the relation between the shrinkage intensity

of the covariance matrix and the OOSU mean. For the shrinkage portfolio that maximizes

the mean-risk OOSU with λ = 2 (i.e., using intensity κ̂?R), we depict the relation between

the shrinkage intensity of the covariance matrix and the mean-risk OOSU. The figure shows
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across all datasets that by shrinking the sample covariance matrix, we can further improve

the out-of-sample performance of shrinkage portfolios. In the next section, we capitalize on

this insight and construct the shrinkage portfolios using a shrinkage covariance matrix as

in (34) where the shrinkage intensity δ is calibrated using the same criterion used to obtain

the optimal combination between the SMV and SGMV portfolios.

7.3 Empirical returns

In this section, we evaluate the out-of-sample performance of the robust portfolio and sev-

eral benchmark strategies using empirical return data. Consistent with the analysis with

simulated data, the results in this section confirm that our proposed shrinkage portfolio is

a robust strategy that delivers favorable average out-of-sample performance and a stable

out-of-sample performance.

We use the six datasets of characteristic and industry-sorted portfolios described in Sec-

tion 7.1. We study the performance of six portfolio strategies. First, the equally weighted

(EW) portfolio. Second, the reward-to-risk (RTR) timing strategy of Kirby and Ostdiek

(2012). Third, the sample global-minimum-variance (SGMV) portfolio. Fourth, the sample

mean-variance (SMV) portfolio. Fifth, the shrinkage portfolio that exploits the intensity κ̂?E
maximizing OOSU mean as in Kan et al. (2021b). The last portfolio strategy is our proposed

shrinkage portfolio that exploits the intensity κ̂?R maximizing the mean-risk OOSU criterion

that we introduce in Section 6, with a fixed value of λ = 2 as in the simulated return data

experiment of Section 7.2. We set the risk-aversion coefficient to γ = 3 as in Kan and Zhou

(2007) and Kan et al. (2021b).17

Our performance analysis exploits a covariance matrix that shrinks the sample covariance

matrix toward the identity. In particular, the SMV and SGMV portfolios are constructed

using the shrinkage covariance matrix of Ledoit and Wolf (2004), and the shrinkage port-

folios use a covariance matrix whose shrinkage intensity is calibrated to optimize the same

criterion used to combine the SGMV and SMV portfolios. In particular, for the shrinkage

portfolio that maximizes OOSU mean, we numerically find the shrinkage intensity of the

17In Appendix IA.4.3, we also consider risk aversions of γ = 1 and 5. In addition, in Appendix IA.4.5, we
consider a shrinkage portfolio that combines the SMV, SGMV, and EW portfolios as in Tu and Zhou (2011).
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covariance matrix that maximizes the portfolio’s OOSU mean. For the shrinkage portfolio

that maximizes the mean-risk OOSU with λ = 2, we numerically find the shrinkage inten-

sity of the covariance matrix that maximizes the portfolio’s mean-risk OOSU.18 While this

empirical setting imposes a higher hurdle for our proposed robust portfolio, we still find that

our methodology consistently outperforms.19

Similar to DeMiguel et al. (2009b), we use a rolling-window approach to evaluate the

out-of-sample performance of the different portfolio strategies. In particular, let τ be the

total number of monthly returns in the dataset and T the sample size used to estimate the

portfolios. Then, starting in month T+1, we estimate portfolio w using an estimation window

containing the first T monthly returns of our sample, and compute its out-of-sample return

in month T + 1 as p̃T+1 = w>rT+1, where rT+1 is the vector of stock returns in month T + 1.

We then move the estimation window one month ahead and construct the out-of-sample

return in month T + 2 similarly. We repeat this process until the end of the sample, which

gives a time series of τ − T out-of-sample returns, i.e., p̃t, t = T + 1, . . . , τ . Our experiments

consider estimation window sizes of T = 120 and 240 monthly observations.

We compute the portfolio turnover at time t as

Turnovert =
N∑
i=1
|wi,t − wi,(t−1)+|, t = T + 1, . . . , τ, (37)

where wi,t is the weight of stock i in month t and wi,(t−1)+ is the prior-month weight before

rebalancing in month t that takes into account portfolio growth. We use the portfolio turnover

at time t to compute out-of-sample portfolio returns net of proportional transaction costs as

pT+1 = p̃T+1 and pt = (1 + p̃t)(1− c× Turnovert−1)− 1, t = T + 2, . . . , τ, (38)

18Provided a shrinkage intensity δ for the shrinkage covariance matrix used in the construction of the
SMV and SGMV portfolios, and a shrinkage intensity κ for the optimal combination of the SMV and
SGMV portfolios, we draw 1,000 bootstrap samples of T observations (with replacement) from the estimation
window. For each bootstrap sample, we approximate the OOSU of the shrinkage portfolios exploiting the
shrinkage covariance matrix as the certainty-equivalent return of the out-of-sample returns from a five-fold
cross-validation experiment. Finally, we compute the OOSU mean and mean-risk OOSU of the estimated
shrinkage portfolios across the 1,000 bootstrap samples using (31) and (33). We find numerically the value of
the shrinkage intensity δ for the shrinkage covariance matrix that maximizes the OOSU mean of the shrinkage
portfolio exploiting κ̂?

E and that maximizes the mean-risk OOSU of the shrinkage portfolio exploiting κ̂?
R.

19In unreported results, we find that our empirical findings are robust to using the sample covariance
matrix or the non-linear shrinkage covariance matrix of Ledoit and Wolf (2017).
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where c is the proportional cost required to rebalance the portfolio. We report the results for

the case without transaction costs (i.e., c = 0), and for the case where c = 20 basis points,

which is the same level of transaction costs as in Kan et al. (2021b).20

We then compute the out-of-sample mean and variance of portfolio returns net of costs as

µp = 1
τ − T

τ∑
t=T+1

pt and σ2
p = 1

τ − T

τ∑
t=T+1

(pt − µp)2.

We compare the six portfolio strategies in terms of their annualized out-of-sample certainty-

equivalent return (CER) and Sharpe ratio (SR):

OOS CER = 12×
(
µp −

γ

2σ
2
p

)
, (39)

OOS SR =
√

12× µp/σp. (40)

The OOS CER corresponds to the empirical out-of-sample utility of estimated portfolios.

We also test the null hypothesis that the OOS CER or SR delivered by κ̂?R are equal to those

delivered by κ̂?E and the EW portfolio, against the alternative hypothesis that κ̂?R yields

larger OOS CER or SR. To compute the test p-values, we generate 1,000 bootstrap samples

using the stationary block bootstrap approach of Politis and Romano (1994) with an average

block size of five and use the methodology of Ledoit and Wolf (2008, Remark 3.2.) to produce

the resulting p-values.

Finally, we also evaluate the out-of-sample performance risk of shrinkage portfolios by

dividing the out-of-sample portfolio returns into non-overlapping three-year windows.21 We

then compute the OOS CER in each window, and the mean and standard deviation of

the OOS CER across all windows. This allows us to evaluate the average out-of-sample

performance delivered by the shrinkage portfolios and their out-of-sample performance risk,

in line with the robustness measure we introduce in this manuscript.

Table 2 reports the out-of-sample results for the portfolios constructed with the standard

estimation window of T = 120 monthly observations. We document that the proposed robust

20In Appendix IA.4.4, we show that our conclusions are robust to considering a larger c = 30 basis points.
21We use three-year windows to obtain a reasonable tradeoff between performance evaluation frequency

and the number of observations in each window. The conclusions are robust to using other window lengths.
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shrinkage portfolio outperforms in terms of certainty-equivalent return, which corresponds to

the empirical out-of-sample utility of estimated portfolios, and Sharpe ratio. In particular, the

median improvement in terms of certainty-equivalent return (Sharpe ratio) net of transaction

costs across the six datasets is 79% (29%) relative to the shrinkage portfolio only maximizing

OOSU mean, 151% (30%) relative to the SMV portfolio, 50% (21%) relative to the SGMV

portfolio, 100% (51%) relative to the timing portfolio, and 179% (74%) relative to the equally

weighted portfolio. The outperformance of the robust shrinkage portfolio relative to the

benchmark portfolios is similar in magnitude in the absence of transaction costs.

Table 3 reports the out-of-sample results for the portfolios constructed with a large

estimation window of T = 240 monthly observations. The results in this new experimental

setting are consistent to those presented in Table 2. In particular, the median improvement

in terms of certainty-equivalent return (Sharpe ratio) net of transaction costs across the six

datasets is 66% (16%) relative to the shrinkage portfolio only maximizing OOSU mean, 75%

(17%) relative to the SMV portfolio, 62% (13%) relative to the SGMV portfolio, 124% (50%)

relative to the timing portfolio and 203% (80%) relative to the equally weighted portfolio.

Like in the case with T = 120, the robust shrinkage portfolio also outperforms the benchmark

portfolios in the absence of transaction costs for T = 240.

Figure 7 presents an overview of the results for the case with an estimation window of

T = 120 monthly observations. In particular, this figure depicts the certainty-equivalent

return (OOS CER) and Sharpe ratio (OOS SR) net of transaction costs. From this figure, it

is easy to appreciate the favorable performance exhibited by our robust shrinkage portfolio

exploiting κ̂?R relative to the shrinkage portfolio exploiting κ̂?E and the SGMV portfolio.

Finally, in addition to outperforming the shrinkage portfolio exploiting κ̂?E in terms of

average OOS CER, the shrinkage portfolio exploiting κ̂?R also delivers a substantially more

stable out-of-sample performance. To see this, we report in Table 4 the mean and standard

deviation of out-of-sample CER across three-year non-overlapping windows. We find that the

shrinkage portfolio exploiting κ̂?R systematically delivers an OOS CER that is both larger on

average and more stable over time. This result is consistent with our definition of portfolio

robustness in the presence of parameter uncertainty.

In Appendix IA.4, we confirm that our insights are robust to considering the tail risk
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Figure 7: Out-of-sample certainty-equivalent return and Sharpe ratio in empirical data

Notes. This figure depicts the annualized out-of-sample certainty-equivalent return and Sharpe ratio of the
SGMV portfolio, the shrinkage portfolio maximizing out-of-sample utility mean (κ̂?

E), and the shrinkage
portfolio maximizing the portfolio robustness measure in Section 6 (κ̂?

R) for the six datasets of monthly
excess returns described in Section 7.1. We use a sample size of T = 120 monthly observations and a
risk-aversion coefficient of γ = 3. The certainty-equivalent return and Sharpe ratio are net of proportional
transaction costs of 20 basis points. The right vertical axis reports the performance for the 46ANOM dataset
for visibility.

of the portfolios, the cumulative wealth derived from the portfolios, different risk-aversion

coefficients, a higher level of transaction costs, and a different combination of portfolios that

exploits the SMV, SGMV, and equally weighted portfolios as in Tu and Zhou (2011).

8 Conclusion

In this manuscript, we characterize the out-of-sample utility (OOSU) risk of the sample mean-

variance (SMV) portfolio, the sample global-minimum-variance (SGMV) portfolio and any

linear combination of the two portfolios. We show that SMV portfolios need unrealistically

large sample sizes —in some cases over 1,000 years of monthly return data— to deliver an

out-of-sample performance as stable as that of SGMV portfolios. In general, the OOSU risk

of sample portfolios is substantial in high-dimensional settings where the number of assets is

large relative to the sample size, and when these portfolios exploit in-sample near-arbitrage

opportunities. We then use our characterization of OOSU risk to propose a novel measure of

portfolio robustness that strikes a balance between OOSU mean and OOSU volatility. We

show that neither the SMV portfolio nor the SGMV portfolio delivers maximal robustness

individually. In particular, one needs to optimally combine both portfolios to obtain an
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improved tradeoff between OOSU mean and volatility. We find that shrinkage portfolios that

optimize our proposed measure of portfolio robustness deliver higher certainty-equivalent

returns and Sharpe ratios.

Our robust portfolio framework can be applied to a broader range of settings than the

one considered in the main body of the manuscript. For instance, we also use our framework

to construct shrinkage portfolios that combine the SMV portfolio, the SGMV portfolio, and

the equally weighted portfolio as in Tu and Zhou (2011). Regardless of the combination used

in the empirical analysis, we show that our methodology offers robust shrinkage portfolios

that are resilient to estimation errors and exhibit favorable performance.

Our analysis of OOSU risk has implications for cross-sectional asset pricing. In particular,

we link the OOSU of estimated portfolios with the out-of-sample R-squared of SDF models.

Our theoretical results suggest that SDF models constructed from a large number of test

assets with short time series and that capture near-arbitrage opportunities will deliver, in

general, unreliable results due to their large out-of-sample R-squared risk. In contrast, SDF

models built from our robust approach will deliver more reliable results with lower out-of-

sample R-squared risk. More broadly, our analysis highlights the importance of considering

the out-of-sample performance risk in the evaluation and construction of quantitative strate-

gies and models of the stochastic discount factor.
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Tables

Table 1: Out-of-sample performance of shrinkage portfolios in simulated data

OOSU mean OOSU risk Mean-risk OOSU

T 120 180 240 120 180 240 120 180 240

Panel A: Gaussian data (in %)
10MOM κ̂?E 0.63 0.72 0.77 0.27 0.18 0.15 0.09 0.35 0.47

κ̂?R 0.66 0.72 0.76 0.20 0.15 0.13 0.27 0.43 0.50
25SBTM κ̂?E 0.45 0.61 0.71 0.37 0.24 0.20 -0.28 0.13 0.31

κ̂?R 0.50 0.62 0.70 0.25 0.19 0.17 0.01 0.24 0.36
25OPINV κ̂?E 0.67 0.85 0.98 0.38 0.27 0.23 -0.10 0.32 0.52

κ̂?R 0.70 0.84 0.95 0.26 0.22 0.21 0.17 0.40 0.52
49IND κ̂?E 0.33 0.56 0.70 0.44 0.29 0.23 -0.56 -0.02 0.24

κ̂?R 0.40 0.57 0.69 0.26 0.20 0.19 -0.11 0.17 0.31
16LTANOM κ̂?E 1.11 1.37 1.54 0.42 0.34 0.29 0.27 0.70 0.97

κ̂?R 1.06 1.32 1.50 0.37 0.34 0.31 0.32 0.63 0.89
46ANOM κ̂?E 5.84 8.04 9.31 1.48 1.11 0.91 2.89 5.81 7.48

κ̂?R 5.70 7.96 9.27 1.27 1.03 0.87 3.17 5.90 7.54

Panel B: Boostrapped data (in %)
10MOM κ̂?E 0.45 0.54 0.61 0.93 0.63 0.49 -1.41 -0.72 -0.36

κ̂?R 0.53 0.58 0.63 0.77 0.54 0.43 -1.01 -0.50 -0.22
25SBTM κ̂?E 0.14 0.29 0.43 1.05 0.72 0.57 -1.96 -1.16 -0.71

κ̂?R 0.31 0.38 0.48 0.77 0.57 0.46 -1.23 -0.76 -0.45
25OPINV κ̂?E 0.37 0.50 0.59 0.82 0.56 0.41 -1.27 -0.61 -0.24

κ̂?R 0.47 0.55 0.61 0.63 0.44 0.34 -0.80 -0.33 -0.06
49IND κ̂?E 0.07 0.18 0.23 0.69 0.44 0.35 -1.31 -0.69 -0.47

κ̂?R 0.21 0.27 0.30 0.50 0.33 0.27 -0.78 -0.39 -0.24
16LTANOM κ̂?E 0.75 0.99 1.16 0.85 0.62 0.48 -0.95 -0.24 0.21

κ̂?R 0.75 0.96 1.12 0.67 0.52 0.42 -0.60 -0.08 0.29
46ANOM κ̂?E 3.53 4.95 5.93 3.59 2.71 2.05 -3.65 -0.46 1.84

κ̂?R 3.90 5.24 6.13 2.61 2.19 1.71 -1.32 0.85 2.70

Notes. This table reports the out-of-sample performance of estimated shrinkage portfolios across six different
datasets of simulated data. The first two blocks of three columns report the mean and standard deviation
of the monthly out-of-sample utility (in percentage) of the estimated shrinkage portfolios. The third block
of three columns reports the mean-risk out-of-sample utility, which is the proposed robustness metric in
Section 6. We report the results for the estimated shrinkage portfolio maximizing out-of-sample utility mean
(κ̂?

E) and for the estimated shrinkage portfolio maximizing the proposed robustness measure (κ̂?
R). In Panel A,

we define the population parameters of a multivariate Gaussian distribution with the sample moments of
each of the six datasets of monthly excess returns described in Section 7.1, and draw 100,000 samples of
size T . For each simulated sample, we construct the two shrinkage portfolios and their corresponding out-
of-sample utilities using Equation (12). Finally, we use the out-of-sample utilities of the 100,000 simulated
samples to construct our performance metrics as in (31)-(33). We proceed similarly in Panel B by generating
1,000 bootstrap samples of size 2T monthly observations, constructing the two shrinkage portfolios using
the first T observations and computing the out-of-sample utility in the remaining T observations, and finally
evaluating the performance metrics across the 1,000 simulated bootstrap samples. We consider sample sizes
of T = 120, 180 and 240 monthly observations, a risk-aversion coefficient of γ = 3, and a coefficient λ = 2
for the portfolio robustness measure.
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Table 2: Out-of-sample performance in empirical data (T = 120)

EW RTR SGMV SMV κ̂?
E κ̂?

R

10MOM Gross OOS CER 0.034 0.051 0.061 0.082 0.115 0.134◦◦◦
Net OOS CER 0.033 0.049 0.057 0.047 0.082 0.118??

◦◦◦
Gross OOS SR 0.455 0.558 0.641 0.877 0.865 0.909◦◦◦
Net OOS SR 0.449 0.547 0.611 0.798 0.773 0.846??

◦◦◦
Average κ̂ / / 0 1 0.395 0.296

25SBTM Gross OOS CER 0.045 0.052 0.072 -0.012 0.123 0.123◦◦◦
Net OOS CER 0.044 0.051 0.063 -0.107 0.058 0.098??

◦◦◦
Gross OOS SR 0.522 0.561 0.748 0.813 0.861 0.991??

◦◦◦
Net OOS SR 0.516 0.554 0.679 0.631 0.643 0.844???

◦◦◦
Average κ̂ / / 0 1 0.214 0.145

25OPINV Gross OOS CER 0.044 0.055 0.079 -0.269 0.080 0.102◦◦◦
Net OOS CER 0.043 0.053 0.071 -0.364 0.039 0.083???

◦◦
Gross OOS SR 0.515 0.586 0.794 0.614 0.699 0.872???

◦◦◦
Net OOS SR 0.509 0.575 0.729 0.461 0.538 0.752???

◦
Average κ̂ / / 0 1 0.191 0.120

49IND Gross OOS CER 0.050 0.052 0.053 -1.456 0.039 0.057??

Net OOS CER 0.049 0.050 0.044 -1.565 0.008 0.046???

Gross OOS SR 0.552 0.565 0.624 0.264 0.486 0.645???

Net OOS SR 0.544 0.554 0.546 0.125 0.279 0.551???

Average κ̂ / / 0 1 0.043 0.024

16LTANOM Gross OOS CER 0.027 0.044 0.066 0.016 0.098 0.109◦◦◦
Net OOS CER 0.026 0.042 0.060 -0.040 0.046 0.087??

◦◦
Gross OOS SR 0.419 0.516 0.695 0.734 0.775 0.887?

◦◦◦
Net OOS SR 0.413 0.505 0.649 0.609 0.600 0.758??

◦◦
Average κ̂ / / 0 1 0.309 0.218

46ANOM Gross OOS CER 0.016 0.052 0.054 -0.532 0.831 0.765◦◦◦
Net OOS CER 0.015 0.051 0.041 -0.609 0.769 0.713◦◦◦
Gross OOS SR 0.358 0.566 0.643 2.272 2.431 2.442◦◦◦
Net OOS SR 0.353 0.555 0.532 2.134 2.316 2.334◦◦◦
Average κ̂ / / 0 1 0.250 0.207

Notes. This table reports the out-of-sample performance of the six portfolio strategies described in Sec-
tion 7.3 for the six datasets of monthly excess returns described in Section 7.1. Each estimated portfolio is
constructed using a sample size of T = 120 monthly observations. The mean-variance portfolios consider a
risk-aversion coefficient of γ = 3. The table reports the annualized out-of-sample certainty-equivalent return
(OOS CER) and the annualized out-of-sample Sharpe ratio (OOS SR), and for both criteria we report the
gross performance and the performance net of proportional transaction costs of 20 basis points. We also
report the average estimated shrinkage intensity κ̂ over time, except for the EW and RTR portfolios that do
not combine the SMV and SGMV portfolios. The stars ?, ??, ??? establish that the OOS CER and SR of the
shrinkage portfolio exploiting κ̂?

R is larger than that of the shrinkage portfolio exploiting κ̂?
E at a confidence

level of 10%, 5%, and 1%, respectively. The circles ◦, ◦◦, ◦ ◦ ◦ convey the same information relative to the
EW portfolio. The numbers in bold font identify the best portfolio in terms of OOS CER and SR.

41



Table 3: Out-of-sample performance in empirical data (T = 240)

EW RTR SGMV SMV κ̂?
E κ̂?

R

10MOM Gross OOS CER 0.039 0.057 0.069 0.106 0.134 0.152◦◦◦
Net OOS CER 0.038 0.056 0.065 0.083 0.114 0.138??

◦◦◦
Gross OOS SR 0.484 0.607 0.706 0.917 0.917 0.959?

◦◦◦
Net OOS SR 0.478 0.600 0.682 0.864 0.862 0.912??

◦◦◦
Average κ̂ / / 0 1 0.546 0.471

25SBTM Gross OOS CER 0.053 0.060 0.081 0.092 0.139 0.144◦◦◦
Net OOS CER 0.052 0.059 0.074 0.031 0.095 0.111◦◦◦
Gross OOS SR 0.567 0.612 0.833 0.917 0.914 1.012??

◦◦◦
Net OOS SR 0.561 0.606 0.778 0.788 0.776 0.851?

◦◦
Average κ̂ / / 0 1 0.364 0.289

25OPINV Gross OOS CER 0.050 0.060 0.102 -0.103 0.124 0.135◦◦◦
Net OOS CER 0.049 0.059 0.097 -0.154 0.099 0.119?

◦◦
Gross OOS SR 0.556 0.633 0.976 0.660 0.872 1.017???

◦◦◦
Net OOS SR 0.550 0.627 0.935 0.565 0.772 0.928???

◦◦
Average κ̂ / / 0 1 0.320 0.232

49IND Gross OOS CER 0.052 0.054 0.044 -0.784 0.024 0.046??

Net OOS CER 0.051 0.053 0.038 -0.846 0.008 0.036???

Gross OOS SR 0.569 0.592 0.557 0.111 0.391 0.557??

Net OOS SR 0.562 0.585 0.501 0.014 0.293 0.475??

Average κ̂ / / 0 1 0.087 0.054

16LTANOM Gross OOS CER 0.028 0.045 0.095 0.123 0.172 0.175◦◦◦
Net OOS CER 0.027 0.044 0.091 0.086 0.136 0.158◦◦◦
Gross OOS SR 0.422 0.520 0.942 0.947 1.016 1.132?

◦◦◦
Net OOS SR 0.416 0.513 0.904 0.863 0.910 1.051??

◦◦◦
Average κ̂ / / 0 1 0.522 0.449

46ANOM Gross OOS CER 0.022 0.057 0.098 -2.160 0.138 0.347???
◦◦

Net OOS CER 0.021 0.056 0.088 -2.159 0.022 0.295???
◦

Gross OOS SR 0.399 0.600 1.037 1.522 1.536 1.648??
◦◦◦

Net OOS SR 0.393 0.593 0.945 1.427 1.371 1.573???
◦◦◦

Average κ̂ / / 0 1 0.511 0.471

Notes. This table reports the out-of-sample performance of the six portfolio strategies described in Sec-
tion 7.3 for the six datasets of monthly excess returns described in Section 7.1. Each estimated portfolio is
constructed using a sample size of T = 240 monthly observations. The mean-variance portfolios consider a
risk-aversion coefficient of γ = 3. The table reports the annualized out-of-sample certainty-equivalent return
(OOS CER) and the annualized out-of-sample Sharpe ratio (OOS SR), and for both criteria we report the
gross performance and the performance net of proportional transaction costs of 20 basis points. We also
report the average estimated shrinkage intensity κ̂ over time, except for the EW and RTR portfolios that do
not combine the SMV and SGMV portfolios. The stars ?, ??, ??? establish that the OOS CER and SR of the
shrinkage portfolio exploiting κ̂?

R is larger than that of the shrinkage portfolio exploiting κ̂?
E at a confidence

level of 10%, 5%, and 1%, respectively. The circles ◦, ◦◦, ◦ ◦ ◦ convey the same information relative to the
EW portfolio. The numbers in bold font identify the best portfolio in terms of OOS CER and SR.
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Table 4: Out-of-sample certainty-equivalent returns of shrinkage portfolios in empirical data

Mean OOS CER Std dev OOS CER

T = 120 T = 240 T = 120 T = 240

Panel A: Without transaction costs (in %)
10MOM κ̂?E 1.027 1.205 2.444 2.631

κ̂?R 1.138 1.312 1.576 2.031
25SBTM κ̂?E 1.074 1.230 1.555 1.739

κ̂?R 1.028 1.255 1.071 1.051
25OPINV κ̂?E 0.613 0.945 1.315 1.198

κ̂?R 0.831 1.118 0.997 0.888
49IND κ̂?E 0.361 0.252 1.178 0.927

κ̂?R 0.522 0.425 0.841 0.786
16LTANOM κ̂?E 0.813 1.448 1.497 2.458

κ̂?R 0.925 1.443 1.12 1.722
46ANOM κ̂?E 7.182 2.709 6.423 4.821

κ̂?R 6.509 4.287 5.646 5.534

Panel B: Net of transaction costs (in %)
10MOM κ̂?E 0.743 1.037 2.422 2.628

κ̂?R 1.002 1.201 1.565 2.040
25SBTM κ̂?E 0.515 0.861 1.362 1.769

κ̂?R 0.819 0.977 1.012 1.002
25OPINV κ̂?E 0.260 0.737 1.339 1.188

κ̂?R 0.666 0.986 1.001 0.878
49IND κ̂?E 0.098 0.113 1.170 0.943

κ̂?R 0.423 0.344 0.834 0.807
16LTANOM κ̂?E 0.390 1.162 1.478 2.438

κ̂?R 0.740 1.303 1.109 1.730
46ANOM κ̂?E 6.645 1.597 6.207 4.996

κ̂?R 6.064 3.762 5.437 5.364

Notes. This table reports the out-of-sample certainty-equivalent return (OOS CER) mean and standard
deviation. We consider the estimated shrinkage portfolio that maximizes out-of-sample utility mean (κ̂?

E),
and the estimated shrinkage portfolio that maximizes the portfolio robustness measure in Section 6 (κ̂?

R).
We report the performance results of the shrinkage portfolios for the six datasets of monthly excess returns
described in Section 7.1. We estimate the shrinkage portfolios with sample sizes of T = 120 and T = 240
monthly observations, a risk-aversion coefficient of γ = 3, and a coefficient λ = 2 for the shrinkage portfolio
that maximizes the proposed robustness measure. We obtain the performance measures applying Equations
(31)-(33) to the OOS CER’s of the shrinkage portfolios obtained by dividing the out-of-sample portfolio
returns into non-overlapping three-year windows and computing for each three-year window the OOS CER
of the shrinkage portfolios. Panel A considers the case without transaction costs, and Panel B considers the
case with proportional transaction costs of 20 basis points.
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The Risk of Out-of-Sample

Portfolio Performance



In this Internet Appendix, we provide several extensions of our analysis and the proofs for

our theoretical results. In Section IA.1, we show the theoretical relationship between the

shrinkage portfolio approach considered in the main body of the manuscript and ambiguity-

averse portfolios. In Section IA.2, we provide the link between our theory and cross-sectional

asset pricing. In Section IA.3, we give details for the feasible estimators we use in the empirical

analysis. In Section IA.4, we check the robustness of our main results to several variations

of the experimental setting considered in the main body of the manuscript. In Section IA.5,

we report the proofs for all the theoretical results in the manuscript and this appendix.

IA.1 Relation with ambiguity-averse portfolios

In this section, we argue that a shrinkage portfolio that combines the SMV and SGMV

portfolios is not only a useful technique to mitigate the impact of estimation risk, but it

is also an economically sound approach. In particular, we show that there is an explicit

relationship between the shrinkage portfolio considered in this manuscript and the optimal

portfolio of an ambiguity-averse investor. The insights provided in this section build on the

work of Garlappi et al. (2007), who account for ambiguity by considering a joint uncertainty

set for the vector of means. This uncertainty set serves as a constraint in the portfolio

problem of a mean-variance investor who solves the following mathematical program

max
w:w>e=1

min
µ

w>µ− γ

2w
>Σ̂w subject to (µ̂− µ)>Σ̂−1(µ̂− µ) ≤ ε2, (IA1)

where (µ̂−µ)>Σ̂−1(µ̂−µ) measures the distance between the sample vector of means µ̂ and

the vector of means µ used by the investor to optimize her objective function. Intuitively, a

larger degree of ambiguity aversion is equivalent to having a larger value of ε in the constraint

of portfolio problem (IA1). Garlappi et al. (2007) show that the closed-form solution of this

problem is

ŵ?(ε) = 1
γ

Σ̂−1
(

1
1 + ε/(γσ?P )

)(
µ̂− B − γ(1 + ε/(γσ?P ))

A
e

)
, (IA2)

where A = e>Σ̂−1e, B = µ̂>Σ̂−1e, and parameter σ?P is the unique positive real root to a

specific fourth-degree polynomial that is monotonically decreasing in ε. Garlappi et al. (2007)
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show that the ambiguity-averse portfolio ŵ?(ε) converges to the SMV portfolio when ε→ 0,

and to the SGMV portfolio when ε → ∞. Intuitively, for 0 < ε < ∞ the ambiguity-averse

portfolio ŵ?(ε) combines the SMV and the SGMV portfolios, similarly to the shrinkage port-

folio ŵ?(κ) in (11). In the next proposition, we characterize the intensity κ of the shrinkage

portfolio ŵ?(κ) in (11) as a function of the ambiguity-aversion parameter ε.

Proposition IA.1. The shrinkage portfolio ŵ?(κ) is equal to the ambiguity-averse portfolio

ŵ?(ε) in Equation (IA2) when

κ =
(

1 + ε

γσ?P

)−1

, (IA3)

where the ratio ε/σ?P is monotonically increasing in ε.

Proposition IA.1 provides the explicit link between the shrinkage portfolio considered in

the main body of the manuscript and the ambiguity-averse portfolio of Garlappi et al. (2007).

In particular, Equation (IA3) shows that a high degree of ambiguity in mean returns (i.e., a

higher ε) results in an ambiguity-averse portfolio whose weights lean more strongly toward

those of the SGMV portfolio, corresponding to a smaller value of κ. Given an optimally

calibrated shrinkage intensity κ, Equation (IA3) allows us to determine the equivalent degree

of ambiguity in mean returns that results in an ambiguity-averse portfolio that delivers robust

out-of-sample performance.

We show in Proposition 7 that our proposed robustness criterion establishes a larger

tilt toward the SGMV portfolio and thus a more considerable degree of ambiguity in mean

returns than the traditional shrinkage criterion that only maximizes OOSU mean.22 In other

words, our proposed shrinkage criterion based on the portfolio robustness measure introduced

in Section 6 delivers portfolios that are less sensitive to estimation errors in mean returns.

IA.2 Relation with cross-sectional asset pricing

This section shows that our characterization of out-of-sample utility (OOSU) risk can be

applied to assess the uncertainty of the out-of-sample fit of a particular robust stochastic
22For example, for the 25SBTM dataset considered in Figure 1, we find that the shrinkage intensity

κ?
E = 0.147 maximizing OOSU mean corresponds to ε = 0.77, whereas the shrinkage intensity κ?

R = 0.0886
maximizing our proposed robsutness measure for λ = 2 corresponds to ε = 1.36, which is larger.
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discount factor (SDF). In particular, we exploit the well-known link between the SDF and

the returns of a mean-variance portfolio (Cochrane, 2005; Kozak et al., 2020) where the

estimated mean-variance portfolio ŵ corresponds to the SDF loadings. Accordingly, we show

that our measure of out-of-sample performance defined in Equation (12) is equivalent to the

out-of-sample fit of an SDF model that prices the cross-section of stock returns. We define

the OOS R-squared of an SDF model as

R̂2
OOS = 1− (µ−Σŵ)>Σ−1(µ−Σŵ)

θ2 , (IA4)

where θ2 = µ>Σ−1µ. Like Kozak et al. (2020), our measure of OOS fit determines how well

the SDF model, defined by the SDF loadings ŵ, explains the vector of out-of-sample mean

returns, µ. Now, consider the following scaled OOS R-squared

θ2

2 R̂
2
OOS = ŵ>µ− 1

2ŵ
>Σŵ, (IA5)

which corresponds to the OOSU of the estimated portfolio ŵ for an investor with risk-aversion

coefficient γ = 1. Like the OOSU, the scaled R̂2
OOS is a random variable because it depends

on the estimated SDF loadings ŵ.

The shrinkage mean-variance portfolio we consider in the main body of the manuscript

embeds as a particular case the robust SDF loadings that solve the following constrained

quadratic program:

ŵ = argmin
w:w>e=1

(µ− Σ̂w)>Σ̂−1(µ− Σ̂w) (IA6)

subject to min
µ

(µ̂− µ)>Σ̂−1(µ̂− µ) ≤ ε2. (IA7)

The solution to this mathematical program delivers the ambiguity-averse mean-variance

portfolio problem in Section IA.1 for an investor with risk-aversion coefficient γ = 1. Due

to the link between constraint (IA7) and the shrinkage intensity κ, which we highlight in

Proposition IA.1, the shrinkage portfolios considered in the main body of the manuscript can

be interpreted as the robust SDF loadings that minimize the Hansen-Jagannathan distance
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(Hansen and Jagannathan, 1997) under the economically motivated constraint faced by

ambiguity-averse investors.

Given the link between the economically motivated SDF loadings in problem (IA6) and

shrinkage portfolios, we can apply our measure of OOSU risk to evaluate the risk of the OOS

fit of robust SDF models. Our theoretical results in Section 5 demonstrate that the OOS

R-squared risk is large in high-dimensional settings and when the estimated SDF loadings of

the model exploit near-arbitrage opportunities. Accordingly, SDF models constructed from

many test assets with short time series and that capture near-arbitrage opportunities are, in

general, unreliable.

IA.3 Feasible estimators of shrinkage intensities

The shrinkage intensities κ?E and κ?R in Equations (17) and (28) are unfeasible because they

depend on the unknown distributional parameters of stock returns. In this section, we provide

the details of the feasible estimators we use in the performance analysis.

For the return variance of the zero-cost portfolio, which is defined in (7) as ψ2, we use

the adjusted estimator proposed by Kan and Zhou (2007). Let ψ̂2 = µ̂>B̂µ̂ be the plug-in

estimator, then we estimate ψ2 as

ψ̂2
kz = (T −N − 1)ψ̂2 − (N − 1)

T
+ 2(ψ̂2)N−1

2 (1 + ψ̂2)−T−2
2

T ×B
(

ψ̂2

1+ψ̂2 ; N−1
2 , T−N+1

2

) , (IA8)

where B(x; a, b) =
∫ x

0 y
a−1(1− y)b−1dy is the incomplete beta function.

For the return variance of the GMV portfolio, which is defined as σ2
g in (6), we rely

on the shrinkage portfolio estimator proposed by Frahm and Memmel (2010, Theorem 2),

which gives a smaller mean out-of-sample variance than the SGMV portfolio. Specifically,

we estimate σ2
g as

σ̂2
g = ŵ>fmΣ̂ŵfm, (IA9)

where ŵfm combines the equally weighted portfolio and the SGMV portfolio as

ŵfm = π̂fmwew + (1− π̂fm)ŵg,
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with a shrinkage intensity

π̂fm = min
1, N − 3

T −N + 2
ŵ>g Σ̂ŵg

w>ewΣ̂wew − ŵ>g Σ̂ŵg

.

IA.4 Robustness checks of empirical results

We now assess the robustness of our empirical results in Section 7.3 to considering (i) the tail

risk of the portfolios, (ii) the cumulative wealth derived from the portfolios, (iii) different risk-

aversion coefficients, (iv) a higher level of transaction costs, (v) and a different combination

of portfolios that exploits the SMV portfolio, the SGMV portfolio, and the equally weighted

portfolio as in Tu and Zhou (2011). We confirm that the insights from Section 7.3 are robust

to these alternative experimental settings.

IA.4.1 Value-at-Risk

Table IA.1 shows that the shrinkage portfolio exploiting κ̂?R delivers lower Value-at-Risk than

that of the shrinkage portfolio exploiting κ̂?E, which is an additional empirical feature offered

by our proposed robust shrinkage portfolio.

IA.4.2 Cumulative wealth

To gauge the economic magnitude of the outperformance delivered by the shrinkage portfolio

exploiting κ̂?R, Table IA.2 reports the cumulative wealth obtained by investing in the shrink-

age portfolios using κ̂?E and κ̂?R.23 We only consider the overlapping out-of-sample period

across the six datasets for comparison purposes. The table shows that the outperformance

delivered by the shrinkage portfolio exploiting κ̂?R is economically significant, translating into

a large increase of cumulative wealth relative to the shrinkage portfolio using κ̂?E. In partic-

ular, the cumulative wealth increases by 255% when T = 120, and by 75.8% when T = 240,

on average across the six datasets.

23We standardize their out-of-sample returns to have the same volatility for comparison purposes. We
take as target volatility that of the market factor over the same out-of-sample period, which we download
from Kenneth French’s website.
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IA.4.3 Different risk-aversion coefficients

Tables IA.3 and IA.4 replicate the results in Tables 2 and 3 for the case where the risk-aversion

coefficient is γ = 1 and 5, respectively. For conciseness, we do not report the performance

of the EW portfolio because the RTR portfolio always outperforms it, and we do not report

the abysmal performance of the MV portfolio either.

For the case with γ = 1 in Table IA.3, we observe that the shrinkage portfolio exploit-

ing κ̂?R delivers a better OOS CER than the RTR portfolio, the SGMV portfolio, and the

shrinkage portfolio exploiting κ̂?E, both before and after transaction costs. We also see that

the outperformance net of transaction costs delivered by κ̂?R relative to κ̂?E is larger than in

the case with γ = 3. For the case with γ = 5 in Table IA.4, we observe that the shrinkage

portfolio exploiting κ̂?R delivers a better OOS CER and OOS Sharpe ratio than the RTR

portfolio, the SGMV portfolio, and the shrinkage portfolio exploiting κ̂?E, both before and

after transaction costs. Overall, the results presented in this section confirm that the insights

shown in the main body of the manuscript are robust to considering different degrees of risk

aversion.

IA.4.4 Higher level of transaction costs

In Table IA.5, we replicate the results in Tables 2 and 3 using a higher level of proportional

transaction cost of 30 basis points in Equation (38). For conciseness, we do not report the

performance of the EW portfolio because the RTR portfolio always outperforms it, and we

do not report the abysmal performance of the MV portfolio either.

Our main insight in the main body of the manuscript is robust to considering a higher

level of proportional transaction costs. Because the shrinkage portfolio exploiting κ̂?E is more

exposed to the SMV portfolio than the shrinkage portfolio exploiting κ̂?R, the impact of a

higher level of transaction costs on the performance of the shrinkage portfolio exploiting κ̂?E
is more severe than that of the shrinkage portfolio exploiting κ̂?R. Comparing the SGMV

portfolio and the shrinkage portfolio exploiting κ̂?R, we find that κ̂?R continues to deliver a

better performance net of transaction costs in nearly all cases. Finally, the shrinkage portfolio

exploiting intensity κ̂?R maintains a better net performance than that of the RTR portfolio,
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except for the 49IND dataset.

IA.4.5 Combining with the equally weighted portfolio

Motivated by the finding of DeMiguel et al. (2009b) that the equally weighted (EW) port-

folio often outperforms mean-variance portfolios out of sample, Tu and Zhou (2011) extend

the framework introduced by Kan and Zhou (2007) and combine several estimates of the

mean-variance portfolio with the EW portfolio. This section follows a similar approach and

applies our methodology to the shrinkage portfolio that combines the SMV, SGMV, and

EW portfolios.

Let wew = e/N denote the EW portfolio. Then, the three-fund shrinkage portfolio that

combines the SMV, SGMV, and EW portfolios is

ŵ?(π, κ) = (1− π)wew + πŵ?(κ) = (1− π)wew + π((1− κ)ŵg + κŵ?), (IA10)

with π, κ ∈ [0, 1]. In the next proposition, we derive closed-form expressions for the OOSU

mean and variance of the shrinkage portfolio ŵ?(π, κ). This result allows us to compute

the mean-risk OOSU and find the corresponding optimal shrinkage intensities (π?R, κ?R). For

notational simplicity, we introduce the following terms

µew = w>ewµ and σ2
ew = w>ewΣwew, (IA11)

for the mean return and variance of the EW portfolio.

Proposition IA.2. Let Assumptions 1 and 2 hold. Then,

1. The out-of-sample utility mean of the three-fund shrinkage portfolio ŵ?(π, κ) is

E[U(ŵ?(π, κ))] = (1− π)µew + π

(
µg + κ

γ

T

T −N − 1ψ
2
)
− γ

2

(
(1− π)2σ2

ew

+ π2
(

T − 2
T −N − 1σ

2
g + κ2

γ2
T (T − 2)(Tψ2 +N − 1)

(T −N)(T −N − 1)(T −N − 3)

)

+ 2π(1− π)
(
σ2
g + κ

γ

T

T −N − 1(µew − µg)
))

. (IA12)
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2. The out-of-sample utility variance of the three-fund shrinkage portfolio ŵ?(π, κ) is

V[U(ŵ?(π, κ))] = V
[
ŵ?(π, κ)>µ

]
+ γ2

4 V
[
ŵ?(π, κ)>Σŵ?(π, κ)

]
− γCov

[
ŵ?(π, κ)>µ, ŵ?(π, κ)>Σŵ?(π, κ)

]
, (IA13)

where the variance of the out-of-sample mean return is

V
[
ŵ?(π, κ)>µ

]
= π2

(
σ2
gψ

2

T −N − 1 + κ2ψ2

γ2
2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)

(T −N)(T −N − 1)2(T −N − 3)

)
,

(IA14)

the variance of the out-of-sample return variance is

V
[
ŵ?(π, κ)>Σŵ?(π, κ)

]
= π4

(
2σ4

g(N − 1)(T − 2)
(T −N − 1)2(T −N − 3)

+
4κ2σ2

g

γ2
T (T − 2)(T +N − 3)(Tψ2 +N − 1)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

+ 2κ4

γ4
T 2(T − 2)C(T,N, ψ2)

(T −N)2(T −N − 1)2(T −N − 2)(T −N − 3)2(T −N − 5)(T −N − 7)

)

+ 4π2(1− π)2
(

(σ2
ew − σ2

g)
(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2) + T 2ψ2

(T −N)(T −N − 1)(T −N − 3)

)

+ κ2

γ2
T 2(T −N + 1)

(T −N)(T −N − 1)2(T −N − 3)(µew − µg)2
)

+ 8π3(1− π)κ
γ

(µew − µg)(
σ2
g

T (T − 2)
(T −N − 1)2(T −N − 3) + κ2

γ2
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

)
,

(IA15)

and the covariance between the out-of-sample mean return and variance is

Cov
[
ŵ?(π, κ)>µ, ŵ?(π, κ)>Σŵ?(π, κ)

]
= 2π3κ

γ

(
σ2
gψ

2 T (T − 2)
(T −N − 1)2(T −N − 3)

+ κ2ψ2

γ2
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

)
+ 2π2(1− π)(µew − µg)(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2)(T −N − 1) + 2T 2(T −N)ψ2

(T −N)(T −N − 1)2(T −N − 3)

)
. (IA16)

Using the result in Proposition IA.2, we can find numerically the shrinkage intensities
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(π?E, κ?E) maximizing OOSU mean and the shrinkage intensities (π?R, κ?R) maximizing our

proposed mean-risk OOSU robustness metric in (27). Those shrinkage intensities depend

on the following distributional parameters of stock returns: µg, σ2
g , ψ2, µew, and σ2

ew. We

estimate σ2
g and ψ2 as in Appendix IA.3. We estimate µew and σ2

ew via the plug-in estimators

µ̂ew = w>ewµ̂ and σ̂2
ew = w>ewΣ̂wew, (IA17)

as in Tu and Zhou (2011). Finally, we estimate µg as the mean return of the shrinkage

portfolio that combines the EW and SGMV portfolios instead of using the plug-in estimator

of µg, which is highly contaminated by estimation errors. We select the shrinkage intensity

π of this shrinkage portfolio as the parameter π that minimizes the mean squared error of

the out-of-sample mean return of the portfolio.

Proposition IA.3. Let Assumptions 1 and 2 hold. Then, the shrinkage portfolio ŵ(π) =

πwew + (1− π)ŵg that minimizes the mean squared error E[(ŵ(π)′µ− µg)2] is obtained for

π =
σ2
gψ

2

σ2
gψ

2 + (µew − µg)(T −N − 1) . (IA18)

Using Proposition IA.3, we estimate µg as

µ̂g = ŵ(π̂)>µ̂ with π̂ =
σ̂2
gψ̂

2
kz

σ̂2
gψ̂

2
kz + (µ̂ew − ŵ>g µ̂)(T −N − 1)

, (IA19)

where ψ̂2
kz is defined in (IA8), σ̂2

g in (IA9), and µ̂ew in (IA17). Finally, using those estimators

of the distributional parameters of stock returns, we can obtain the estimated shrinkage

intensities (π̂?E, κ̂?E) and (π̂?R, κ̂?R) numerically using the results in Proposition IA.2.

In Tables IA.6, we report the out-of-sample performance of the shrinkage portfolio

ŵ?(π, κ) in (IA10) that combines the SMV, SGMV, and EW portfolios using the intensities

(π̂?E, κ̂?E) and (π̂?R, κ̂?R). As in Tables 2 and 3, we estimate the portfolios with a covariance

matrix that shrinks the sample covariance matrix toward the identity. The SGMV portfolio

uses the shrinkage approach of Ledoit and Wolf (2004) and the two shrinkage portfolios

use a shrinkage intensity calibrated via bootstrap (see Footnote 18) to optimize the same
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criterion used to combine the SGMV and SMV portfolios.

We observe that the results in the manuscript are robust to considering the EW portfolio

in the shrinkage portfolios. Specifically, the robust shrinkage portfolio exploiting (π̂?R, κ̂?R)

delivers a greater OOS CER than the shrinkage portfolio maximizing OOSU mean in all cases

except one before transaction costs and all cases after transaction costs. It also systematically

delivers a greater Sharpe ratio. Similarly, the robust shrinkage portfolio outperforms the

SGMV portfolio in most cases, before and after transaction costs.

Overall, the results presented in this section confirm that our proposed robustness mea-

sure can be applied in the construction of other investment strategies and outperform com-

binations of portfolios that only focus on maximizing OOSU mean as well as the individual

portfolios being combined.
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Table IA.1: Value-at-Risk of shrinkage portfolios

OOS 1% VaR OOS 5% VaR

κ̂?E κ̂?R κ̂?E κ̂?R

Panel A: Without transaction costs
T = 120 10MOM 0.249 0.184 0.119 0.081

25SBTM 0.203 0.102 0.099 0.058
25OPINV 0.207 0.125 0.094 0.062
49IND 0.129 0.084 0.067 0.056
16LTANOM 0.197 0.122 0.107 0.076
46ANOM 0.186 0.157 0.117 0.091

T = 240 10MOM 0.287 0.218 0.132 0.102
25SBTM 0.215 0.155 0.099 0.064
25OPINV 0.203 0.136 0.103 0.071
49IND 0.142 0.092 0.070 0.060
16LTANOM 0.183 0.116 0.117 0.079
46ANOM 0.612 0.408 0.247 0.212

Panel B: Net of transaction costs
T = 120 10MOM 0.252 0.187 0.121 0.083

25SBTM 0.212 0.105 0.110 0.060
25OPINV 0.211 0.127 0.097 0.063
49IND 0.131 0.084 0.074 0.056
16LTANOM 0.200 0.122 0.114 0.076
46ANOM 0.189 0.160 0.121 0.095

T = 240 10MOM 0.291 0.221 0.133 0.104
25SBTM 0.218 0.158 0.102 0.068
25OPINV 0.204 0.136 0.106 0.071
49IND 0.143 0.093 0.071 0.060
16LTANOM 0.186 0.117 0.120 0.080
46ANOM 0.616 0.412 0.259 0.218

Notes. This table reports the out-of-sample 1% and 5% Value-at-Risk of the estimated shrinkage portfolio
that maximizes out-of-sample utility mean (κ̂?

E) and the estimated shrinkage portfolio that maximizes the
portfolio robustness measure in Section 6 (κ̂?

R) for the six datasets of monthly excess returns described in
Section 7.1. We estimate the shrinkage portfolios using sample sizes of T = 120 and T = 240 monthly
observations, a risk-aversion coefficient of γ = 3, and a coefficient λ = 2 for the shrinkage portfolio that
maximizes the proposed robustness measure. The out-of-sample Value-at-Risk is computed as the negative
1st and 5th percentiles of the out-of-sample monthly excess returns. Panel A considers the case without
transaction costs, and Panel B considers the case with proportional transaction costs of 20 basis points.
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Table IA.2: Cumulative wealth net of transaction costs of shrinkage portfolios

κ̂?E κ̂?R % increase

Panel A: T = 120 (July 1983 – December 2013)
10MOM 88.5 140 59%
25SBTM 149 740 396%
25OPINV 34.6 166 381%
49IND 5.44 24.2 346%
16LTANOM 27.5 119 332%
46ANOM 49,686 56,731 14%

Panel B: T = 240 (July 1993 – December 2013)
10MOM 5.86 7.70 31%
25SBTM 18.3 23.4 28%
25OPINV 9.83 17.2 75%
49IND 2.18 4.70 116%
16LTANOM 8.84 19.0 115%
46ANOM 64.8 123 90%

Notes. This table reports the cumulative wealth net of proportional transaction costs of 20 basis points of
the estimated shrinkage portfolios. We consider the estimated shrinkage portfolio that maximizes out-of-
sample utility mean (κ̂?

E), and the estimated shrinkage portfolio that maximizes the portfolio robustness
measure in Section 6 (κ̂?

R). We report the cumulative wealth of the shrinkage portfolios for the six datasets
of monthly excess returns described in Section 7.1. The out-of-sample returns include the risk-free rate and
are standardized to have the same volatility as that of the market factor during the same time period. We
only consider the overlapping out-of-sample period across the six datasets, which spans July 1983 through
December 2013 when the portfolios are estimated with a sample size of T = 120 (Panel A) and July 1993
through December 2013 when the portfolios are estimated with a sample size of T = 240 (Panel B). We use
a risk-aversion coefficient of γ = 3 and a coefficient λ = 2 for the shrinkage portfolio that maximizes the
proposed robustness measure.
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Table IA.3: Out-of-sample performance with lower risk aversion

T = 120 T = 240

RTR SGMV κ̂?
E κ̂?

R RTR SGMV κ̂?
E κ̂?

R

10MOM Gross OOS CER 0.077 0.082 0.238 0.286 0.079 0.088 0.274 0.323
Net OOS CER 0.075 0.078 0.150 0.243 0.078 0.084 0.218 0.289
Gross OOS SR 0.558 0.641 0.745 0.770 0.607 0.706 0.784 0.804
Net OOS SR 0.547 0.611 0.654 0.702 0.600 0.682 0.727 0.761
Average κ̂ / 0 0.395 0.273 / 0 0.546 0.454

25SBTM Gross OOS CER 0.087 0.088 0.231 0.231 0.086 0.096 0.253 0.271
Net OOS CER 0.086 0.079 0.052 0.177 0.085 0.089 0.133 0.199
Gross OOS SR 0.561 0.748 0.693 0.866 0.612 0.833 0.730 0.802
Net OOS SR 0.554 0.679 0.464 0.708 0.606 0.778 0.589 0.653
Average κ̂ / 0 0.214 0.131 / 0 0.364 0.280

25OPINV Gross OOS CER 0.079 0.097 0.107 0.154 0.081 0.119 0.191 0.209
Net OOS CER 0.077 0.088 -0.008 0.107 0.080 0.114 0.119 0.167
Gross OOS SR 0.586 0.794 0.495 0.656 0.633 0.976 0.619 0.745
Net OOS SR 0.575 0.729 0.318 0.504 0.627 0.935 0.505 0.635
Average κ̂ / 0 0.191 0.104 / 0 0.320 0.221

49IND Gross OOS CER 0.075 0.067 0.068 0.070 0.073 0.058 0.020 0.056
Net OOS CER 0.074 0.058 0.011 0.051 0.072 0.051 -0.017 0.031
Gross OOS SR 0.565 0.624 0.395 0.550 0.592 0.557 0.234 0.391
Net OOS SR 0.554 0.546 0.172 0.423 0.585 0.501 0.131 0.256
Average κ̂ / 0 0.043 0.016 / 0 0.087 0.041

16LTANOM Gross OOS CER 0.077 0.084 0.191 0.206 0.071 0.111 0.341 0.351
Net OOS CER 0.075 0.078 0.046 0.151 0.070 0.107 0.235 0.295
Gross OOS SR 0.516 0.695 0.640 0.766 0.520 0.942 0.836 0.907
Net OOS SR 0.505 0.649 0.452 0.611 0.513 0.904 0.724 0.808
Average κ̂ / 0 0.309 0.201 / 0 0.522 0.443

46ANOM Gross OOS CER 0.079 0.067 2.378 2.179 0.083 0.111 0.240 0.850
Net OOS CER 0.077 0.054 2.177 2.011 0.082 0.101 -0.179 0.736
Gross OOS SR 0.566 0.643 2.364 2.372 0.600 1.037 1.474 1.565
Net OOS SR 0.555 0.532 2.249 2.265 0.593 0.945 1.228 1.491
Average κ̂ / 0 0.250 0.205 / 0 0.511 0.471

Notes. This table reports the out-of-sample performance of four portfolio strategies described in Section 7.3
for the six datasets of monthly excess returns described in Section 7.1. Each estimated portfolio is constructed
using a sample size of T = 120 and 240 monthly observations. The mean-variance portfolios consider a risk-
aversion coefficient of γ = 1. The table reports the annualized out-of-sample certainty-equivalent return
(OOS CER) and the annualized out-of-sample Sharpe ratio (OOS SR), and for both criteria we report the
gross performance and the performance net of proportional transaction costs of 20 basis points. We also
report the average estimated shrinkage intensity κ̂ over time, except for the RTR portfolio that does not
combine the SMV and SGMV portfolios.
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Table IA.4: Out-of-sample performance with higher risk aversion

T = 120 T = 240

RTR SGMV κ̂?
E κ̂?

R RTR SGMV κ̂?
E κ̂?

R

10MOM Gross OOS CER 0.025 0.040 0.072 0.084 0.035 0.050 0.091 0.101
Net OOS CER 0.023 0.036 0.051 0.072 0.034 0.047 0.078 0.090
Gross OOS SR 0.558 0.641 0.915 0.916 0.607 0.706 0.985 1.005
Net OOS SR 0.547 0.611 0.829 0.851 0.600 0.682 0.931 0.952
Average κ̂ / 0 0.395 0.312 / 0 0.546 0.483

25SBTM Gross OOS CER 0.018 0.055 0.089 0.086 0.034 0.065 0.102 0.109
Net OOS CER 0.016 0.046 0.046 0.067 0.033 0.058 0.074 0.083
Gross OOS SR 0.561 0.748 0.949 0.958 0.612 0.833 1.012 1.077
Net OOS SR 0.554 0.679 0.745 0.828 0.606 0.778 0.881 0.920
Average κ̂ / 0 0.214 0.155 / 0 0.364 0.298

25OPINV Gross OOS CER 0.031 0.062 0.059 0.075 0.039 0.085 0.097 0.105
Net OOS CER 0.029 0.053 0.031 0.060 0.038 0.080 0.081 0.093
Gross OOS SR 0.586 0.794 0.787 0.882 0.633 0.976 0.985 1.070
Net OOS SR 0.575 0.729 0.638 0.777 0.627 0.935 0.899 0.992
Average κ̂ / 0 0.191 0.132 / 0 0.320 0.244

49IND Gross OOS CER 0.028 0.039 0.029 0.044 0.034 0.031 0.016 0.036
Net OOS CER 0.026 0.030 0.009 0.034 0.033 0.025 0.003 0.029
Gross OOS SR 0.565 0.624 0.553 0.668 0.592 0.557 0.459 0.598
Net OOS SR 0.554 0.546 0.401 0.582 0.585 0.501 0.359 0.540
Average κ̂ / 0 0.043 0.029 / 0 0.087 0.061

16LTANOM Gross OOS CER 0.011 0.048 0.064 0.076 0.018 0.079 0.125 0.127
Net OOS CER 0.009 0.042 0.029 0.059 0.017 0.075 0.103 0.114
Gross OOS SR 0.516 0.695 0.829 0.878 0.520 0.942 1.118 1.183
Net OOS SR 0.505 0.649 0.658 0.766 0.513 0.904 1.021 1.104
Average κ̂ / 0 0.309 0.232 / 0 0.522 0.455

46ANOM Gross OOS CER 0.026 0.041 0.513 0.472 0.032 0.085 0.109 0.237
Net OOS CER 0.024 0.028 0.474 0.439 0.031 0.075 0.002 0.203
Gross OOS SR 0.566 0.643 2.445 2.435 0.600 1.037 1.596 1.717
Net OOS SR 0.555 0.532 2.327 2.324 0.593 0.945 1.377 1.641
Average κ̂ / 0 0.250 0.208 / 0 0.511 0.472

Notes. This table reports the out-of-sample performance of four portfolio strategies described in Section 7.3
for the six datasets of monthly excess returns described in Section 7.1. Each estimated portfolio is constructed
using a sample size of T = 120 and 240 monthly observations. The mean-variance portfolios consider a risk-
aversion coefficient of γ = 5. The table reports the annualized out-of-sample certainty-equivalent return
(OOS CER) and the annualized out-of-sample Sharpe ratio (OOS SR), and for both criteria we report the
gross performance and the performance net of proportional transaction costs of 20 basis points. We also
report the average estimated shrinkage intensity κ̂ over time, except for the RTR portfolio that does not
combine the SMV and SGMV portfolios.
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Table IA.5: Out-of-sample performance with higher transaction costs

T = 120 T = 240

RTR SGMV κ̂?
E κ̂?

R RTR SGMV κ̂?
E κ̂?

R

10MOM Gross OOS CER 0.051 0.061 0.114 0.131 0.057 0.069 0.135 0.152
Net OOS CER 0.049 0.055 0.065 0.105 0.056 0.064 0.104 0.131
Gross OOS SR 0.558 0.641 0.864 0.898 0.607 0.706 0.917 0.958
Net OOS SR 0.542 0.597 0.727 0.793 0.597 0.670 0.834 0.888
Average κ̂ / 0 0.395 0.296 / 0 0.546 0.471

25SBTM Gross OOS CER 0.052 0.072 0.122 0.123 0.060 0.081 0.139 0.146
Net OOS CER 0.050 0.058 0.022 0.086 0.058 0.070 0.073 0.096
Gross OOS SR 0.561 0.748 0.858 0.995 0.612 0.833 0.914 1.014
Net OOS SR 0.550 0.644 0.523 0.768 0.603 0.750 0.705 0.773
Average κ̂ / 0 0.214 0.145 / 0 0.364 0.289

25OPINV Gross OOS CER 0.055 0.079 0.080 0.101 0.060 0.102 0.124 0.133
Net OOS CER 0.052 0.066 0.018 0.073 0.059 0.094 0.087 0.109
Gross OOS SR 0.586 0.794 0.699 0.866 0.633 0.976 0.872 1.004
Net OOS SR 0.569 0.696 0.458 0.696 0.623 0.915 0.722 0.872
Average κ̂ / 0 0.191 0.120 / 0 0.320 0.232

49IND Gross OOS CER 0.052 0.053 0.043 0.059 0.054 0.044 0.024 0.046
Net OOS CER 0.049 0.039 -0.005 0.041 0.052 0.035 0.001 0.031
Gross OOS SR 0.565 0.624 0.510 0.661 0.592 0.557 0.392 0.558
Net OOS SR 0.549 0.507 0.194 0.519 0.581 0.473 0.250 0.437
Average κ̂ / 0 0.043 0.024 / 0 0.087 0.054

16LTANOM Gross OOS CER 0.044 0.066 0.099 0.110 0.045 0.095 0.172 0.175
Net OOS CER 0.041 0.057 0.020 0.077 0.043 0.088 0.118 0.149
Gross OOS SR 0.516 0.695 0.779 0.893 0.520 0.942 1.016 1.130
Net OOS SR 0.499 0.626 0.508 0.703 0.509 0.886 0.856 1.011
Average κ̂ / 0 0.309 0.218 / 0 0.522 0.449

46ANOM Gross OOS CER 0.052 0.054 0.832 0.765 0.057 0.098 0.147 0.347
Net OOS CER 0.050 0.035 0.738 0.687 0.056 0.083 0.003 0.268
Gross OOS SR 0.566 0.643 2.433 2.442 0.600 1.037 1.543 1.648
Net OOS SR 0.550 0.476 2.259 2.278 0.589 0.900 1.347 1.534
Average κ̂ / 0 0.250 0.207 / 0 0.511 0.471

Notes. This table reports the out-of-sample performance of four portfolio strategies described in Section 7.3
for the six datasets of monthly excess returns described in Section 7.1. Each estimated portfolio is constructed
using a sample size of T = 120 and 240 monthly observations. The mean-variance portfolios consider a risk-
aversion coefficient of γ = 3. The table reports the annualized out-of-sample certainty-equivalent return
(OOS CER) and the annualized out-of-sample Sharpe ratio (OOS SR), and for both criteria we report the
gross performance and the performance net of proportional transaction costs of 30 basis points. We also
report the average estimated shrinkage intensity κ̂ over time, except for the RTR portfolio that does not
combine the SMV and SGMV portfolios.
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Table IA.6: Out-of-sample performance exploiting the equally weighted portfolio

T = 120 T = 240

EW SGMV κ̂?
E κ̂?

R EW SGMV κ̂?
E κ̂?

R

10MOM Gross OOS CER 0.034 0.061 0.110 0.120 0.039 0.069 0.132 0.147
Net OOS CER 0.033 0.057 0.079 0.102 0.038 0.065 0.111 0.133
Gross OOS SR 0.455 0.641 0.851 0.854 0.484 0.706 0.909 0.942
Net OOS SR 0.449 0.611 0.764 0.784 0.478 0.682 0.851 0.894
Average κ̂ / 0 0.692 0.674 / 0 0.784 0.781
Average π̂ 0 / 0.637 0.473 0 / 0.724 0.629

25SBTM Gross OOS CER 0.045 0.072 0.122 0.120 0.053 0.081 0.142 0.151
Net OOS CER 0.044 0.063 0.059 0.090 0.052 0.074 0.099 0.103
Gross OOS SR 0.522 0.748 0.858 0.945 0.567 0.833 0.923 1.026
Net OOS SR 0.516 0.679 0.649 0.775 0.561 0.778 0.788 0.803
Average κ̂ / 0 0.648 0.628 / 0 0.663 0.658
Average π̂ 0 / 0.427 0.312 0 / 0.600 0.471

25OPINV Gross OOS CER 0.044 0.079 0.074 0.090 0.050 0.102 0.119 0.126
Net OOS CER 0.043 0.071 0.032 0.069 0.049 0.097 0.094 0.111
Gross OOS SR 0.515 0.794 0.671 0.802 0.556 0.976 0.851 0.969
Net OOS SR 0.509 0.729 0.505 0.673 0.550 0.935 0.749 0.883
Average κ̂ / 0 0.820 0.786 / 0 0.867 0.866
Average π̂ 0 / 0.272 0.170 0 / 0.381 0.265

49IND Gross OOS CER 0.050 0.053 0.038 0.049 0.052 0.044 0.037 0.047
Net OOS CER 0.049 0.044 0.013 0.039 0.051 0.038 0.024 0.038
Gross OOS SR 0.552 0.624 0.481 0.560 0.569 0.557 0.471 0.547
Net OOS SR 0.544 0.546 0.336 0.491 0.562 0.501 0.393 0.485
Average κ̂ / 0 0.431 0.365 / 0 0.418 0.393
Average π̂ 0 / 0.232 0.131 0 / 0.249 0.133

16LTANOM Gross OOS CER 0.027 0.066 0.094 0.109 0.028 0.095 0.165 0.167
Net OOS CER 0.026 0.060 0.043 0.086 0.027 0.091 0.128 0.150
Gross OOS SR 0.419 0.695 0.762 0.883 0.422 0.942 0.994 1.103
Net OOS SR 0.413 0.649 0.588 0.750 0.416 0.904 0.886 1.020
Average κ̂ / 0 0.783 0.784 / 0 0.839 0.859
Average π̂ 0 / 0.443 0.301 0 / 0.672 0.573

46ANOM Gross OOS CER 0.016 0.054 0.302 0.765 0.022 0.098 -1.007 0.374
Net OOS CER 0.015 0.041 0.126 0.713 0.021 0.088 -1.067 0.320
Gross OOS SR 0.358 0.643 1.999 2.436 0.399 1.037 1.415 1.665
Net OOS SR 0.353 0.532 1.746 2.328 0.393 0.945 1.279 1.587
Average κ̂ / 0 0.727 0.713 / 0 0.799 0.801
Average π̂ 0 / 0.494 0.454 0 / 0.698 0.651

Notes. This table reports the out-of-sample performance of the shrinkage portfolios that combine the SMV,
SGMV, and equally weighted portfolios introduced in Appendix IA.4.5 for the six datasets of monthly excess
returns described in Section 7.1. Each estimated portfolio is constructed using a sample size of T = 120 and
240 monthly observations. The mean-variance portfolios consider a risk-aversion coefficient of γ = 3. The
table reports the annualized out-of-sample certainty-equivalent return (OOS CER) and the annualized out-of-
sample Sharpe ratio (OOS SR), and for both criteria we report the gross performance and the performance
net of proportional transaction costs of 20 basis points. We also report the average estimated shrinkage
intensities π̂ and κ̂ over time, which determine the combination of the three portfolios in Equation (IA10).
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IA.5 Proofs of all results

Throughout the proofs presented in this section, we use the fact that the shrinkage portfolio

ŵ?(κ) in (11) can be rewritten as

ŵ?(κ) = ŵg + κ

γ
ŵz. (IA20)

Proof of Proposition 1

Kan et al. (2021b, Proposition 1) show that the finite-sample distribution of out-of-sample

mean return and variance, and thus of OOSU, of the shrinkage portfolio ŵ?(κ) is a function

of 12 univariate independent random variables. Six of those random variables are normally

distributed, and the remaining six are the following chi-square distributions: u0 ∼ χ2
N−2,

s1 ∼ χ2
N−4, s2 ∼ χ2

N−3, v2 ∼ χ2
T−N+1, w1 ∼ χ2

T−N+3, and w2 ∼ χ2
T−N+2. In the high-

dimensional asymptotic setting where N, T →∞ and N/T → ρ ∈ [0, 1), these six chi-square

random variables are normally distributed. Specifically, from the proof of Kan et al. (2021a,

Proposition 4), we have that

√
T (u0/T − ρ) d→ N (0, 2ρ),
√
T (s1/T − ρ) d→ N (0, 2ρ),
√
T (s2/T − ρ) d→ N (0, 2ρ),

√
T (v2/T − (1− ρ)) d→ N (0, 2(1− ρ)),

√
T (w1/T − (1− ρ)) d→ N (0, 2(1− ρ)),
√
T (w2/T − (1− ρ)) d→ N (0, 2(1− ρ)).

Therefore,
√
TU(ŵ?(κ)) is asymptotically a function of 12 independent univariate Gaussian

random variables. Using the delta method, it then follows that the asymptotic distribution

of
√
TU(ŵ?(κ)) is Gaussian as well.

To find the asymptotic mean and variance, u(κ, ρ) and v(κ, ρ), we proceed as follows.

First, we take the finite-sample expressions for OOSU mean and variance, E[U(ŵ?(κ))] and
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V[U(ŵ?(κ))], which are available in Propositions 2 and 3, respectively. Second, we only

keep the dominant terms in N and T . Third, in the resulting expressions, we set N = ρT .

Following these three steps, it is straightforward to show that E[U(ŵ?(κ))] → u(κ, ρ) and

TV[U(ŵ?(κ))]→ v(κ, ρ) as N, T →∞ with N/T → ρ ∈ [0, 1), which proves the proposition.

Proof of Proposition 2

The proof of this proposition is in Kan et al. (2021b).

Proof of Lemma 1

Equation (18) is directly obtained from the definition of OOSU in (12) and the formula for

the variance of a sum of two correlated random variables.

Proof of Proposition 3

Kan et al. (2021b, Proposition 1) derive a stochastic representation for the out-of-sample

mean return and variance of the shrinkage portfolio ŵ(κ) that combines the SMV and SGMV

portfolios, i.e., for the two random variables ŵ?(κ)>µ and ŵ?(κ)>Σŵ?(κ). Using this result,

we can find analytical expressions for the three terms composing the OOSU variance in (18).

Specifically, the variance of the out-of-sample mean return is

V
[
ŵ?(κ)>µ

]
=

σ2
gψ

2

T −N − 1 + κ2ψ2

γ2
2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)

(T −N)(T −N − 1)2(T −N − 3) , (IA21)

the variance of the out-of-sample return variance is

V
[
ŵ?(κ)>Σŵ?(κ)

]
=

2σ4
g(N − 1)(T − 2)

(T −N − 1)2(T −N − 3)

+
4κ2σ2

g

γ2
T (T − 2)(T +N − 3)(Tψ2 +N − 1)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

+ 2κ4

γ4
T 2(T − 2)C(T,N, ψ2)

(T −N)2(T −N − 1)2(T −N − 2)(T −N − 3)2(T −N − 5)(T −N − 7) , (IA22)
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where C(T,N, ψ2) is defined in Proposition 3, and the covariance between the out-of-sample

mean return and variance is

Cov
[
ŵ?(κ)>µ, ŵ?(κ)>Σŵ?(κ)

]
=

2κσ2
gψ

2

γ

T (T − 2)
(T −N − 1)2(T −N − 3)

+ 2κ3ψ2

γ3
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) . (IA23)

We find the final expression for the OOSU variance in Proposition 3 by plugging (IA21)–

(IA23) into (18).

Proof of Corollary 1

First, we prove that the shrinkage intensity that minimizes OOSU variance, κ?V , is strictly

positive. The derivative of the OOSU variance in (19) with respect to κ, evaluated at κ = 0,

is
∂V[U(ŵ?(κ))]

∂κ

∣∣∣∣∣
κ=0

= a4. (IA24)

Now, observe that a4 in Equation (25) is strictly negative when ψ2 > 0 because σ2
g > 0.

Therefore, provided that ψ2 > 0, it is always optimal to choose a shrinkage intensity κ > 0

to minimize OOSU variance.

Second, we prove that κ?V < 1, which follows from Proposition 7 where we show that

κ?V ≤ κ?E. Indeed, because κ?E < 1 as long as the sample size T is finite, it follows that κ?V < 1.

Proof of Proposition 4

Parameters T and N . From the closed-form expression of V[U(ŵ?(κ))] in Proposition 3,

it is straightforward to see that it is decreasing in T and increasing in N . In particular, it is

easy to check that V[U(ŵ?(κ))]→ 0 as T →∞ for any shrinkage intensity κ.

Parameter σ2
g . The derivative of the OOSU variance with respect to σ2

g is

∂V[U(ŵ?(κ))]
∂σ2

g

= ψ2

T −N − 1 + σ2
gγ

2 (N − 1)(T − 2)
(T −N − 1)2(T −N − 3)

IA19



+ κ2 T (T − 2)(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) − 2κψ2 T (T − 2)

(T −N − 1)2(T −N − 3) .

(IA25)

The objective is to show that the derivative in (IA25) is always positive. Notice that it

increases with σ2
g , and thus it suffices to show that it is always positive for the case σ2

g = 0.

That is, we need to show that

ψ2

T −N − 1 + κ2 T (T − 2)(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

− 2κψ2 T (T − 2)
(T −N − 1)2(T −N − 3) ≥ 0. (IA26)

Notice that the left-hand side of (IA26) is a second-degree polynomial in κ. Because the

coefficient in front of κ2 is positive, we can prove that inequality (IA26) holds by showing

that the polynomial discriminant is always negative. That is, after some simplifications,

ψ2 T (T − 2)
(T −N − 1)(T −N − 3) ≤

(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 5) . (IA27)

Notice that the right-hand side of inequality (IA27) is of the form a + bψ2 with a > 0.

Therefore, we can prove the inequality by showing that the coefficient in front of ψ2 on the

right-hand side is larger than that in front of ψ2 on the left-hand side. This is equivalent to

showing that

T (T +N − 3)
(T −N)(T −N − 5) ≥

T (T − 2)
(T −N − 1)(T −N − 3) , (IA28)

which holds under Assumption 1.

Parameter ψ2. The derivative of the OOSU variance with respect to ψ2 is

∂V[U(ŵ?(κ))]
∂ψ2 =

σ2
g

T −N − 1

+ κ4

2γ2

T 2(T − 2)∂C(T,N,ψ2)
∂ψ2

(T −N)2(T −N − 1)2(T −N − 2)(T −N − 3)2(T −N − 5)(T −N − 7)
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− 2κ3

γ2
4ψ2T 3(T − 2) + T 2(T − 2)(T +N − 3)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

+ κ2

γ2
2T (N + 1) + T 2(T −N − 3) + 4T 2(T −N)ψ2

(T −N)(T −N − 1)2(T −N − 3)

+ κ2σ2
g

T 2(T − 2)(T +N − 3)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

− 2κσ2
g

T (T − 2)
(T −N − 1)2(T −N − 3) . (IA29)

First, we show that the derivative (IA29) is increasing in σ2
g and thus that it suffices to show

that it is positive for σ2
g = 0. We have

∂

∂σ2
g

(
∂V[U(ŵ?(κ))]

∂ψ2

)
= 1
T −N − 1 + κ2 T 2(T − 2)(T +N − 3)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

− 2κ T (T − 2)
(T −N − 1)2(T −N − 3) . (IA30)

Following a similar strategy to the case with σ2
g as a parameter, the derivative (IA30) is

always positive if the polynomial discriminant is negative. This amounts to showing, after

some simplifications, that

(T +N − 3)(T −N − 1)(T −N − 3)
(T − 2)(T −N)(T −N − 5) ≥ 1,

which holds under Assumption 1. Therefore, we can now prove the result of the proposi-

tion by showing that the derivative in (IA29) is positive for σ2
g = 0. That is, after some

simplifications,

κ2

2
T 2(T − 2)∂C(T,N,ψ2)

∂ψ2

(T −N)(T −N − 2)(T −N − 3)(T −N − 7)

− 2κ
(
4T 3(T − 2)ψ2 + T 2(T − 2)(T +N − 3)

)
+ (T −N − 5)

(
2T (N + 1) + T 2(T −N − 3) + 4T 2(T −N)ψ2

)
≥ 0. (IA31)

We find that the derivative of (IA31) with respect to ψ2 is positive if

∂2C(T,N, ψ2)
∂(ψ2)2 ≥ 8T 2(T − 2)(T −N − 2)(T −N − 3)(T −N − 7)

(T −N − 5) , (IA32)
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where ∂2C(T,N,ψ2)
∂(ψ2)2 = 2T 2(N3 +2N2T −6N2−7NT 2 +40NT −53N +4T 3−34T 2 +88T −70),

and inequality (IA32) holds under Assumption 1. Therefore, we can now prove the result of

the proposition by showing that the derivative in (IA31) is positive for ψ2 = 0. That is,

κ2

2

T 2(T − 2)∂C(T,N,ψ2)
∂ψ2

∣∣∣∣
ψ2=0

(T −N)(T −N − 2)(T −N − 3)(T −N − 7) − 2κT 2(T − 2)(T +N − 3)

+ (T −N − 5)(2T (N + 1) + T 2(T −N − 3)) ≥ 0. (IA33)

As usual, we prove inequality (IA33) by showing that the polynomial discriminant is negative,

which amounts to showing, after some simplifications, that

∂C(T,N, ψ2)
∂ψ2

∣∣∣∣
ψ2=0

≥ 2T (T − 2)(T −N)(T −N − 2)(T −N − 3)(T +N − 3)2

(T −N − 5)(2(N + 1) + T (T −N − 3)) , (IA34)

which holds under Assumption 1, thus concluding the proof for parameter ψ2.

Parameter κ. To prove the result we need to show that the derivative of the OOSU variance

with respect to κ is positive if κ ≥ κ?E. That is,

4a1κ
3 + 3a2κ

2 + 2a3κ+ a4 ≥ 0 (IA35)

if κ ≥ κ?E. As we show below, the derivative in (IA35) decreases with γ when κ ≥ κ?E.

Therefore, we can derive a sufficient condition on the value of κ for which inequality (IA35)

holds by considering the case γ →∞. In that case, the condition in (IA35) becomes

2κσ2
g

T (T − 2)(T +N − 3)(Tψ2 +N − 1)
(T −N)(T −N − 1)2(T −N − 3)(T −N − 5) − 2σ2

gψ
2 T (T − 2)
(T −N − 1)2(T −N − 3) ≥ 0,

which after isolating κ reduces to the sufficient condition

κ ≥ κ?E
(T − 2)(T −N − 5)

(T +N − 3)(T −N − 3) , (IA36)

which is satisfied when κ ≥ κ?E because the right-hand side of (IA36) is smaller than κ?E

under Assumption 1.
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The only step missing now is to show that the left-hand side of (IA35) is decreasing in γ

when κ ≥ κ?E. To prove this result, it is useful to introduce the notation

a1 = a1γ
2,

a2 = a2γ
2,

a3,1 = ψ2 2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)
(T −N)(T −N − 1)2(T −N − 3) ,

which are all independent of γ. Now, it is straightforward to show that the left-hand side of

(IA35) is decreasing in γ when κ ≥ κ?E if

4a1κ
2 + 3a2κ+ 2a3,1 ≥ 0 (IA37)

when κ ≥ κ?E. Since a1 ≥ 0, inequality (IA37) holds for all κ if the polynomial discriminant

is negative. Otherwise, if the discriminant is positive, we need to show that the maximum

of the two real roots to the polynomial in (IA37) is smaller than κ?E. That is,

−3a2 +
√

9a2
2 − 32a1a3,1

8a1
≤ κ?E. (IA38)

After some simplifications, proving inequality (IA38) is equivalent to showing that

4a1(κ?E)2 + 3a2κ
?
E + 2a3,1 ≥ 0. (IA39)

We can reformulate inequality (IA39) as

ψ2C(T,N, ψ2)
(T − 2)(T −N − 2)(T −N − 5)(T −N − 7)

− 3ψ2(Tψ2 +N − 1)(T +N − 3 + 2Tψ2)
T −N − 5

+ 2T (N + 1) + T 2(T −N − 3 + 2(T −N)ψ2)
(T −N)(T −N − 3)

(
ψ2 + N − 1

T

)2
≥ 0. (IA40)

Notice that inequality (IA40) holds when ψ2 = 0. Therefore, we can prove (IA40) by showing
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that the derivative of the left-hand side with respect to ψ2 is positive. That is,

1
(T − 2)(T −N − 2)(T −N − 5)(T −N − 7)

[
(4Tψ2 +N − 1)(N4 +N3T − 3N3

− 4N2T 2 + 22N2T − 31N2 +NT 3 − 7NT 2 + 13NT − 5N + T 4 − 12T 3 + 53T 2 − 100T

+ 70) + 3T 2ψ4(N3 + 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70)
]

− 3T
T −N − 5

[
(T +N − 3)

(
2ψ2 + N − 1

T

)
+ 2T

(
3ψ4 + 2ψ2N − 1

T

)]

+ 2T
(T −N)(T −N − 3)

[
(2(N + 1) + T (T −N − 3))

(
ψ2 + N − 1

T

)
+ T (T −N)(

3ψ4 + 4ψ2N − 1
T

+
(
N − 1
T

)2)]
≥ 0. (IA41)

One can check that inequality (IA41) holds when ψ2 = 0 under Assumption 1. Therefore, we

can prove (IA41) by showing as before that the derivative of the left-hand side with respect

to ψ2 is positive. That is,

2T
(T − 2)(T −N − 2)(T −N − 5)(T −N − 7)

[
2(N4 +N3T − 3N3 − 4N2T 2 + 22N2T

− 31N2 +NT 3 − 7NT 2 + 13NT − 5N + T 4 − 12T 3 + 53T 2 − 100T + 70) + 3Tψ2(N3

+ 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70)
]
− 6T
T −N − 5[

T +N − 3 + 2T
(

3ψ2 + N − 1
T

)]
+ 2T

(T −N)(T −N − 3)

[
2(N + 1) + T (T −N − 3)

+ 2T (T −N)
(

3ψ2 + 2N − 1
T

) ≥ 0. (IA42)

Again, one can check that inequality (IA42) holds when ψ2 = 0 under Assumption 1. There-

fore, we prove as usual that the derivative of the left-hand side of (IA42) with respect to ψ2

is positive. That is,

N3 + 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70
(T − 2)(T −N − 2)(T −N − 5)(T −N − 7)

− 6
T −N − 5 + 2

T −N − 3 ≥ 0. (IA43)
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This last inequality holds under Assumption 1, which concludes the demonstration of in-

equality (IA37) for κ ≥ κ?E.

Proof of Proposition 5

By definition of ψ2 in (7), it can be written as

ψ2 = µ>Σ−1µ− (e>Σ−1µ)2

e>Σ−1e
. (IA44)

Using the eigenvalue decomposition Σ−1 = VD−1V> and exploiting Assumption 3, the three

quantities appearing in (IA44) simplify to

µ>Σ−1µ = µ>VD−1V>µ =
N∑
i=1

(v>i µ)2

di
,

e>Σ−1µ =
√
Nv>1 VD−1V>µ =

√
N
v>1 µ

d1
,

e>Σ−1e = Nv>1 VD−1V>v1 = N

d1
.

Using these expressions, it is straightforward to check that (IA44) is equal to ∑N
i>1 SR

2
PCi

,

which proves the proposition.

Proof of Proposition 6

For conciseness, we denote U(κ) = U(ŵ(κ)). The covariance between ψ̂2 = µ̂>Σ̂−1µ̂ −

(µ̂g/σ̂g)2 and (U(κ)− E[U(κ)])2 is

Cov
[
ψ̂2, (U(κ)− E[U(κ)])2

]
= E

[
ψ̂2(U(κ)− E[U(κ)])2

]
− E[ψ̂2]V[U(κ)]. (IA45)

In Equation (IA45), the OOSU variance V[U(κ)] is given in Proposition 3. Moreover, from

Kan and Zhou (2007), we have

E[ψ̂2] = ψ2T +N − 1
T −N − 1 . (IA46)
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The last expectation, E
[
ψ̂2(U(κ)− E[U(κ)])2

]
, decomposes as

E
[
ψ̂2(U(κ)− E[U(κ)])2

]
= E

[
ψ̂2U(κ)2

]
− 2E[U(κ)]E

[
ψ̂2U(κ)

]
+ E[U(κ)]2E[ψ̂2]. (IA47)

In Equation (IA47), the OOSU mean E[U(κ)] is given in Proposition 2. Therefore, it remains

to evaluate two expectations: E
[
ψ̂2U(κ)

]
and E

[
ψ̂2U(κ)2

]
. Using the stochastic representa-

tion for ψ̂2 and U(κ) available in Kan et al. (2021b, Proposition 1), we find the following

analytical expressions for the two expectations:

E
[
ψ̂2U(κ)

]
= ψ2T +N − 1

T −N − 1

(
µg −

γσ2
g(T − 2)(T −N − 2)

2(T −N)(T −N − 3)

)

+ κψ2T (ψ2T +N + 1)
γ(T −N − 1)(T −N − 3)

−
κ2T (T − 2)

(
ψ4T 2 + 2ψ2T (N + 1) + (N + 1)(N − 1)

)
2γ(T −N)(T −N − 1)(T −N − 3)(T −N − 5) , (IA48)

E
[
ψ̂2U(κ)2

]
=
µ2
g(ψ2T +N − 1)
T −N − 1 +

σ2
gψ

2
(
ψ2T (T −N) +N(T −N − 1) + 4− T

)
(T −N)(T −N − 1)(T −N − 3)

−
γµgσ

2
g(T − 2)(T −N − 2)(ψ2T +N − 1)

(T −N)(T −N − 1)(T −N − 3)

+
γ2σ4

g(T − 2)(T − 4)(ψ2T +N − 1)((T −N − 1)(T −N − 5) + 3)
4(T −N)(T −N − 1)(T −N − 2)(T −N − 3)(T −N − 5)

+
κψ2T (ψ2T +N + 1)

(
2µg

γ
(T −N)(T −N − 5)− σ2

g(T − 2)(T −N − 2)
)

(T −N)(T −N − 1)(T −N − 3)(T −N − 5)

+
κ2ψ2T

(
ψ4T 2(T −N) + ψ2T ((T −N)(N + 4) +N − 2) + (N − 1)(T − 2)

)
γ2(T −N)(T −N − 1)(T −N − 3)(T −N − 5)

−
κ2µgT (T − 2)

(
ψ4T 2 + 2ψ2(N + 1) + (N + 1)(N − 1)

)
γ(T −N)(T −N − 1)(T −N − 3)(T −N − 5)

+
κ2σ2

gT (T − 2)(T − 4)(T −N − 4)
(
ψ4T 2 + 2ψ2T (N + 1) + (N + 1)(N − 1)

)
2(T −N)(T −N − 1)(T −N − 2)(T −N − 3)(T −N − 5)(T −N − 7)

−
κ3ψ2T 2(T − 2)

(
ψ4T 2 + 2ψ2T (N + 3) + (N + 3)(N + 1)

)
γ2(T −N)(T −N − 1)(T −N − 3)(T −N − 5)(T −N − 7)

+ κ4T 2(T − 2)(T − 4)/(T −N − 9)
4γ2(T −N)(T −N − 1)(T −N − 2)(T −N − 3)(T −N − 5)(T −N − 7)

×
(
ψ6T 3 + 3ψ4T 2(N + 3) + 3ψ2T (N + 3)(N + 1) + (N + 3)(N + 1)(N − 1)

)
,

(IA49)
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where E
[
ψ̂2U(κ)2

]
exists under the assumption that T > N + 9.

To prove that the covariance is always positive, note first that it is independent of µg
because U(κ) − E[U(κ)] is independent of µg. Therefore, without loss of generality, we set

µg = 0. We begin by showing that the covariance increases with σ2
g , and thus, that it suffices

to show that the covariance is positive for σ2
g = 0. To show that the covariance increases with

σ2
g , we take the derivative with respect to σ2

g and observe that it is positive when σ2
g = 0,

and moreover the derivative itself increases with σ2
g . Indeed, we have

∂2

∂σ2
g∂σ

2
g

Cov
[
ψ̂2, (U(κ)− E[U(κ)])2

]
=

γ2(T − 2)(ψ2T +N − 1)
2(T −N)(T −N − 1)3(T −N − 2)(T −N − 3)(T −N − 5)

×
(
(T − 4)(T −N − 1)2((T −N − 1)(T −N − 5) + 3)− 2(T − 2)(T −N − 2)(T −N − 5)

)
,

(IA50)

which is positive under the assumption that T > N + 9. Therefore, what remains is to show

that the covariance is positive for µg = 0 and σ2
g = 0. We proceed in a similar way to the

proof of Proposition 4 by showing that the covariance is positive for κ = 0, taking derivatives

with respect to κ, and showing each time that these derivatives are positive for κ = 0. At

the end of this process, what remains to show is that the following quantity is positive:

(T − 4)
(
ψ6T 3 + 3ψ4T 2(N + 3) + 3ψ2T (N + 3)(N + 1) + (N + 3)(N + 1)(N − 1)

)
(T −N − 2)(T −N − 5)(T −N − 7)(T −N − 9)

−
2(T − 2)(ψ2T +N − 1)

(
ψ4T 2 + 2ψ2T (N + 1) + (N + 1)(N − 1)

)
(T −N)(T −N − 1)(T −N − 3)(T −N − 5)

+ (T − 2)(ψ2T +N − 1)3

(T −N)(T −N − 1)2(T −N − 3)

− 2C(T,N, ψ2)(ψ2T +N − 1)
(T −N)(T −N − 1)2(T −N − 2)(T −N − 3)(T −N − 5)(T −N − 7) ≥ 0, (IA51)

where C(T,N, ψ2) is defined in Proposition 3. To show that inequality (IA51) holds, observe

that it holds for ψ2 = 0, and we can proceed as before by taking iterative derivatives with

respect to ψ2 and showing that they are positive for ψ2 = 0. At the end of this process, what
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remains to show is the following inequality:

T − 4
(T −N − 2)(T −N − 5)(T −N − 7)(T −N − 9)

− 2(T − 2)
(T −N)(T −N − 1)(T −N − 3)(T −N − 5)

+ T − 2
(T −N)(T −N − 1)2(T −N − 3)

− 2(N3 + 2N2T − 6N2 − 7NT 2 + 40NT − 53N + 4T 3 − 34T 2 + 88T − 70)
(T −N)(T −N − 1)2(T −N − 2)(T −N − 3)(T −N − 5)(T −N − 7) ≥ 0. (IA52)

This inequality holds under the assumption T > N + 9, which concludes the proof.

Proof of Proposition 7

Part 1. The proof is direct because, as shown in Proposition 3, the OOSU variance

V[U(ŵ?(κ))] → 0 as T → ∞ and, thus, the shrinkage intensity κ?R corresponds to κ?E as

T →∞, and as shown in Proposition 2 this κ?E is asymptotically optimal.

Part 2. First, κ?R ≥ κ?V because κ?V minimizes OOSU variance by definition and the OOSU

mean in (16) is increasing in κ for κ ≤ κ?E. Since κ?V ≤ κ?E as we will prove next, this means

that κ?V has a larger OOSU mean and smaller OOSU variance than any κ ≤ κ?V . Therefore,

κ?R maximizing the mean-risk OOSU metric in (27) is necessarily larger than κ?V .

Second, we prove the inequality κ?R ≤ κ?E, which also implies κ?V ≤ κ?E. To prove this

inequality, note from part 2 of Proposition 4 that OOSU variance increases with κ if κ ≥ κ?E.

Moreover, OOSU mean in (16) is decreasing in κ for κ ≥ κ?E. As a result, any κ ≥ κ?E delivers

a smaller mean-risk OOSU than κ?E and thus κ?R is necessarily smaller than κ?E.

Proof of Proposition 8

Parts 1 and 2. The proof is direct because, on the one hand, the OOSU mean in (16)

increases with T and µg and decreases with N , σ2
g , and κ if κ ≥ κ?E. On the other hand,

we show in Proposition 4 that OOSU standard deviation decreases with T and κ if κ ≥ κ?E,

increases with N and σ2
g , and also is independent of µg.

Part 3. The derivative of the robustness measure with respect to λ is ∂
∂λ
R(ŵ?(κ)) =
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−
√
V[U(ŵ?(κ))] and, as shown in Proposition 4, the OOSU variance V[U(ŵ?(κ))] increases

with ψ2, which proves the result.

Proof of Proposition IA.1

Denote µ̂g = ŵ>g µ̂ and σ̂2
g = ŵ>g Σ̂ŵg. Then, the coefficients A and B in (IA2) correspond

to A = 1/σ̂2
g and B = µ̂g/σ̂

2
g . Denote also f(ε) = 1 + ε/(γσ?P ). Then, the ambiguity-averse

portfolio can be rewritten as

ŵ?(ε) = 1
γf(ε)Σ̂−1

(
µ̂− µ̂ge+ γf(ε)σ̂2

ge
)

= ŵg + 1
γf(ε)Σ̂−1(µ̂− µ̂ge).

The result follows by noticing that Σ̂−1(µ̂− µ̂ge) = B̂µ̂ = ŵz, which is the estimated zero-

cost portfolio, and therefore ŵ?(ε) corresponds to the shrinkage portfolio ŵ?(κ) in (11) if

κ = 1/f(ε) = (1 + ε
γσ?

P
)−1.

Finally, σ?P is monotonically decreasing in ε because Garlappi et al. (2007) show that a

higher ε implies a higher exposure to the SGMV portfolio and, thus, a smaller portfolio-return

volatility. Consequently, the ratio ε/σ?P is monotonically increasing in ε.

Proof of Proposition IA.2

To prove the results in this proposition, we use Okhrin and Schmid (2006, Theorem 1) to

find that, under Assumptions 1 and 2, the mean and covariance matrix of the shrinkage

portfolio ŵ?(κ) in (11) are

E[ŵ?(κ)] = wg + κ

γ

T

T −N − 1Bµ, (IA53)

V[ŵ?(κ)] =
(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2) + T 2ψ2

(T −N)(T −N − 1)(T −N − 3)

)
B

+ κ2

γ2
T 2(T −N + 1)

(T −N)(T −N − 1)2(T −N − 3)Bµµ>B. (IA54)

Moreover, we use the following useful properties: Be = 0, BΣB = B, µ>BΣwew = µew−µg,

and w>ewΣBΣwew = σ2
ew − σ2

g .
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Part 1. The OOSU mean of the shrinkage portfolio ŵ?(π, κ) in (IA10) is

E[U(ŵ?(π, κ))] = (1− π)µew + πE
[
ŵ?(κ)>µ

]
− γ

2

(
(1− π)2σ2

ew

+ π2E
[
ŵ?(κ)>Σŵ?(κ)

]
+ 2π(1− π)E

[
w>ewΣŵ?(κ)

])
. (IA55)

From Kan et al. (2021b, Lemma 1), we have

E
[
ŵ?(κ)>µ

]
= µg + κ

γ

T

T −N − 1ψ
2, (IA56)

E
[
ŵ?(κ)>Σŵ?(κ)

]
= T − 2
T −N − 1σ

2
g + κ2

γ2
T (T − 2)(N − 1) + T 2(T − 2)ψ2

(T −N)(T −N − 1)(T −N − 3) . (IA57)

Moreover, using Equation (IA53), we find that

E
[
w>ewΣŵ?(κ)

]
= σ2

g + κ

γ

T

T −N − 1(µew − µg). (IA58)

Plugging (IA56)–(IA58) into (IA55), we find that the OOSU mean is given by Equa-

tion (IA12).

Part 2.We derive the expressions for the three components of the OOSU variance in (IA13).

First, the variance of out-of-sample mean return is

V
[
ŵ?(π, κ)>µ

]
= π2V

[
ŵ?(κ)>µ

]
,

where V
[
ŵ?(κ)>µ

]
is given by (IA21), which results in Equation (IA14).

Second, the variance of out-of-sample return variance is

V
[
ŵ?(π, κ)>Σŵ?(π, κ)

]
= π4V

[
ŵ?(κ)>Σŵ?(κ)

]
+ 4π2(1− π)2w>ewΣV[ŵ?(κ)]Σwew

+ 4π3(1− π)Cov
[
ŵ?(κ)>Σwew, ŵ?(κ)>Σŵ?(κ)

]
. (IA59)

The first term, V
[
ŵ?(κ)>Σŵ?(κ)

]
, is given by (IA22). Using Equation (IA54), the second

IA30



term is

w>ewΣV[ŵ?(κ)]Σwew = (σ2
ew − σ2

g)
(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2) + T 2ψ2

(T −N)(T −N − 1)(T −N − 3)

)

+ κ2

γ2
T 2(T −N + 1)

(T −N)(T −N − 1)2(T −N − 3)(µew − µg)2.

The third term is similar to (IA23) and is

Cov
[
ŵ?(κ)>Σwew, ŵ?(κ)>Σŵ?(κ)

]
= 2κ

γ
(µew − µg)

(
σ2
g

T (T − 2)
(T −N − 1)2(T −N − 3)

+ κ2

γ2
T 2(T − 2)(T +N − 3 + 2Tψ2)

(T −N)(T −N − 1)2(T −N − 3)(T −N − 5)

)
. (IA60)

Putting these three terms together into (IA59) gives Equation (IA15).

Third, the covariance between out-of-sample mean return and variance is

Cov
[
ŵ?(π, κ)>µ, ŵ?(π, κ)>Σŵ?(π, κ)

]
= π3Cov

[
ŵ?(κ)>µ, ŵ?(κ)>Σŵ?(κ)

]
+ 2π2(1− π)Cov

[
ŵ?(κ)>µ, ŵ?(κ)>Σwew

]
. (IA61)

The first term, Cov
[
ŵ?(κ)>µ, ŵ?(κ)>Σŵ?(κ)

]
, is given by (IA23). Using Equation (IA54),

the second term is

Cov
[
ŵ?(κ)>µ, ŵ?(κ)>Σwew

]
= µ>V[ŵ?(κ)Σwew

= (µew − µg)
(

σ2
g

T −N − 1 + κ2

γ2
T (T − 2)(T −N − 1) + 2T 2(T −N)ψ2

(T −N)(T −N − 1)2(T −N − 3)

)
.

Putting these two terms together into (IA61) results in the final expression in Equa-

tion (IA16) and concludes the proof.

Proof of Proposition IA.3

To prove this proposition, we use Okhrin and Schmid (2006, Theorem 1), who show that if

T > N , N ≥ 2, and Assumption 2 holds, then the mean and covariance matrix of the SGMV
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portfolio ŵg are

E[ŵg] = wg and V[ŵg] =
σ2
g

T −N − 1B.

Using this result, the mean and covariance matrix of the shrinkage portfolio ŵ(π) = πwew +

(1− π)ŵg are

E[ŵ(π)] = πµew + (1− π)µg,

V[ŵ(π)] = (1− π)2 σ2
g

T −N − 1B.

Therefore, the mean squared error E[(ŵ(π)>µ− µg)2] is given by

E
[
(ŵ(π)>µ− µg)2

]
=
(
E
[
ŵ(π)>µ

]
− µg

)2
+ V

[
ŵ(π)>µ

]
= π2(µew − µg)2 + (1− π)2 σ2

gψ
2

T −N − 1 .

Taking the derivative of E[(ŵ(π)>µ−µg)2] with respect to π and setting it to zero yields the

final expression for π in (IA18).

IA32



References in Internet Appendix

Cochrane, J., 2005. Asset Pricing: Revised Edition. Princeton University Press.

DeMiguel, V., Garlappi, L., Uppal, R., 2009. Optimal versus naive diversification: How in-

efficient is the 1/N portfolio strategy? The Review of Financial Studies 22, 1915–1953.

Frahm, G., Memmel, C., 2010. Dominating estimators for minimum-variance portfolios. Jour-

nal of Econometrics 159, 289–302.

Garlappi, L., Uppal, R., Wang, T., 2007. Portfolio selection with parameter and model

uncertainty: A multi-prior approach. The Review of Financial Studies 20, 41–81.

Hansen, L. P., Jagannathan, R., 1997. Assessing specification errors in stochastic discount

factor models. The Journal of Finance 52, 557–590.

Kan, R., Wang, X., Zheng, X., 2021a. In-sample and out-of-sample sharpe ratios of multi-

factor asset pricing models. Available at SSRN 3454628.

Kan, R., Wang, X., Zhou, G., 2021b. Optimal portfolio choice with estimation risk: No

risk-free asset case. Management Science 68, 2047–2068.

Kan, R., Zhou, G., 2007. Optimal portfolio choice with parameter uncertainty. Journal of

Financial and Quantitative Analysis 42, 621–656.

Kozak, S., Nagel, S., Santosh, S., 2020. Shrinking the cross-section. Journal of Financial

Economics 135, 271–292.

Ledoit, O., Wolf, M., 2004. A well-conditioned estimator for large-dimensional covariance

matrices. Journal of Multivariate Analysis 88, 365–411.

Okhrin, Y., Schmid, W., 2006. Distributional properties of portfolio weights. Journal of

Econometrics 134, 235–256.

Tu, J., Zhou, G., 2011. Markowitz meets talmud: A combination of sophisticated and naive

diversification strategies. Journal of Financial Economics 99, 204–215.

IA33


	Introduction
	Literature review
	Mean-variance portfolios
	The distribution of out-of-sample utility
	Theoretical assumptions
	Sample portfolios and out-of-sample utility
	Asymptotic distribution of out-of-sample utility
	Finite-sample out-of-sample utility risk
	Out-of-sample utility mean
	Out-of-sample utility variance
	Monotonicity properties of out-of-sample utility variance
	Relation with near-arbitrage opportunities

	A new portfolio robustness measure
	A new robustness measure
	The robust optimal portfolio
	Estimation of optimal shrinkage intensities
	Monotonicity properties of the robustness measure
	Relation to robust optimization

	Performance analysis
	Data
	Simulated returns
	Empirical returns

	Conclusion
	Relation with ambiguity-averse portfolios

	Relation with cross-sectional asset pricing
	Feasible estimators of shrinkage intensities
	Robustness checks of empirical results
	Value-at-Risk
	Cumulative wealth
	Different risk-aversion coefficients
	Higher level of transaction costs
	Combining with the equally weighted portfolio
	Proofs of all results


