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Definition

The stock basket:
I the price of stock j at time t is denoted by Sj(t).

I the price of the basket at time t is denoted by S(t):

S(t) = w1S1(t) + · · ·+ wnSn(t), wj ≥ 0.

Basket derivative:
I start of the contract: t = 0;

I pay-off function H and maturity T;

I arbitrage-free price:

time-t price = V(t, S1, S2, . . . , Sn).
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Examples

European-type basket derivative:
I H is a function of S(T) only.

I Example: basket call and put options.

Path-dependent basket derivative:
I H is a function of the process S between time 0 and time T.

I Example: Barrier and Asian basket options.

American-type basket derivative:
I Exercising the options of the contract is possible at any time t ≤ T.

I Example: American-type Asian basket options.
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Our focus will be on basket options.

Basket call option:
I Strike K and maturity T;

I Pay-off function:

Pay-off = max {S(T)− K, 0} notation
= (S(T)− K)+.

Basket put option:
I Strike K and maturity T;

I Pay-off function:

Pay-off = max {K− S(T), 0} notation
= (K− S(T))+.
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Why do we need basket options?
I Basket options can provide protection for an investment portfolio.

I Basket options can be used to construct forward-looking market
implied dependence measures.

I Dispersion trading is the most popular strategy for trading correlation
and involves basket options.
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Basket options: references

Multivariate Black & Scholes:

I Milevsky & Posner (1998), Krekel, Kock, Korn & Man (2002), Brigo,
Mercurio, Rapisarda, & Scotti (2004), Deelstra, Liinev & Vanmaele
(2004), Borovkova, Permana & V.D. Weide (2007), Linders &
Schoutens (2014).

Non-Gaussian models:

I Xu & Zheng (2014), Leccadito, Paletta & Tunaru (2016), Caldana,
Fusai, Gnoatto & Graselli (2016), Bo & Wang (2017), Linders &
Stassen (2016), Linders & Schoutens (2016).

Model-free upper bounds:

I Hobson, Laurence & Wang (2005), D’Aspremont & El Ghaoui (2006),
Chen, Deelstra, Dhaene & Vanmaele (2008), Linders, Dhaene,
Hounnon & Vanmaele (2012).

https://daniellinders.files.wordpress.com/2017/01/impliedcorr_publishedversion.pdf
https://daniellinders.files.wordpress.com/2017/01/impliedcorr_publishedversion.pdf
https://daniellinders.files.wordpress.com/2016/06/indexoptionsmvvg-2015-05-18.pdf
https://daniellinders.files.wordpress.com/2016/06/indexoptionsmvvg-2015-05-18.pdf
https://daniellinders.files.wordpress.com/2016/12/publishedversion_levycorrelation1.pdf
https://daniellinders.files.wordpress.com/2016/06/afi_1265.pdf
https://daniellinders.files.wordpress.com/2016/06/afi_1265.pdf
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Multivariate Black & Scholes market

The multivariate Black & Scholes model2:

dSi (t)
Si (t)

= µidt + σidBi(t), for t > 0 and i = 1, 2, . . . , n,

I µi is the drift of stock i,

I σi is the volatility of stock i,

I Bi is a standard Brownian motion.

Correlation:
E
[
dBi(t)dBj(t)

]
= ρi,jdt.

2The usual assumptions apply: the risk-free rate r is constant and there exists a
risk-neutral measure Q.
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Pricing methodologies

Methodology 1: PDE approach
I Solve the Partial Differential Equation combined with the appropriate

final condition:

∂V
∂t

+
1
2

n

∑
i=1

n

∑
j=1

σiσjρi,jwiwjSiSj
∂2V

∂Si∂Sj
+ r

n

∑
i=1

Si
∂V
∂Si
− rV = 0.

I Problem:
Very hard to solve numerically!

Methodology 2: Risk-neutral valuation
I Determine the discounted risk-neutral expectation:

V(t, S1, S2, . . . , Sn) = e−r(T−t)EQ [H(S(T))| Ft] .

I Problem:
The distribution of S(T) is unknown!
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Risk-neutral valuation: pros and cons

Pros of risk-neutral valuation:
I Only the time-T distribution is needed.

I Efficient in high dimensions.

Cons of risk-neutral valuation:
I Difficult to include early exercise.

I Monte Carlo simulation is slow in low dimensions.
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PDE approach: pros and cons

Pros of the PDE approach:
I Early exercise features can easily be incorporated using finite

difference methods.

I Strong path dependent derivatives can be priced. (e.g. Asian options)

Cons of the PDE approach:
I Difficult in high dimensions.

I Dynamics of the stock prices are needed.
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Pricing using the PDE approach

Our focus:

pricing multivariate derivatives using the PDE approach.

Curse of dimensionality:
I Problem: mixed derivative terms;

I numerical solutions are hard to implement.

Numerically solving the multidimensional PDE:
I Remove the mixed terms by changing the coordinate system.

F Company, Egorova, Jodar & Soleymani (2016),
Riesinger & Wissman (2017).

I Sparse grid method: combine smaller grid solutions
F Leentvaar & Oosterlee (2008).
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Aim of the paper

The comonotonic market:
I Tractable PDE for the basket derivative price;

I We can derive an exact solution which is fast to determine;

I Comonotonic finite difference scheme is efficient, even in high
dimensions.

Approximate basket derivative pricing:
I Approximate a non-comonotonic market with an artificial comonotonic

market;

I Pricing in the artificial comonotonic market is fast and efficient;

I Basket derivative prices in the artificial market are accurate
approximations for the real basket derivative prices.
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Introduction

The comonotonic market:
I stock prices at time t are denoted by Sc

i (t):

dSc
i (t)

Sc
i (t)

= µidt + σidB(t), for t > 0 and i = 1, 2, . . . , n.

I B is a standard Brownian motion;

I the marginal distributions: Sc
i (t)

d
= Si(t).

Copula:
I comonotonic copula;

I in a comonotonic market, all stocks are driven by the same single
Brownian motion B.
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Introduction
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Notation

The comonotonic basket:

Sc(t) = w1Sc
1(t) + . . . + wnSc

n(t).

Lemma:
I The SDE of the comonotonic basket Sc is given by

dSc(t) = µc(t, B)dt + σc(t, B)dB(t),

I where

µc(t, B) =
n

∑
i=1

µiwiSc
i (t, B)

I and

σc(t, B) =
n

∑
i=1

σiwiSc
i (t, B).
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The shifted Brownian motion process

The following statements are equivalent3:
I The comonotonic market is arbitrage-free.

I There exists a λ satisfying:

λ =
µi − r

σi
, for all i = 1, 2, . . . , n.

Interpretation:
I the random source of each stock is the same;

I one unit volatility is essentially the same for each stock;

I therefore, each stock has the same market price of risk.

3see Dhaene, Kukush & Linders (2013)

https://daniellinders.files.wordpress.com/2016/06/mvbls_submission_20121206.pdf
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The shifted Brownian motion

The shifted Brownian motion process Bλ:

dBλ(t) = dB(t) + λdt.

The comonotonic stock prices:

Sc
i (t) = Si(0)e(

r− 1
2 σ2

i )t+σiBλ(t), for i = 1, 2, . . . , n.

The dynamics of the comonotonic basket:

dSc(t) = rSc(t)dt + σc(t, B)dBλ(t).
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A risk-free portfolio

The following statements are equivalent:
I observing the realization Bλ(t);

I observing the realization Sc
i (t);

I observing the realization Sc(t).

Price of the derivative at maturity time T:
I Vc (t, Sc(t))

Price of the derivative in function of Bλ:

Vc
λ (t, Bλ) = Vc

(
t,

n

∑
i=1

wiSi(0)e(
r− 1

2 σ2
i )t+σiBλ

)
.
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A risk-free portfolio

Portfolio:
I long one basket derivative Vc

λ;

I short ∆ units of the basket Sc.

Time-t value of the portfolio:

Π(t) = Vc
λ(t)− ∆Sc(t).

Change in portfolio value:

dΠ = dVc
λ − ∆dSc.

I dSc: see previous lemma.

I dVc
λ: use Ito’s lemma.

The portfolio is risk-free if:

∆ =
1
σc

∂Vc
λ

∂Bλ
,
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The PDE for the comonotonic basket derivative price

Theorem

The PDE for the derivative price Vc
λ:

∂Vc
λ

∂t
+

1
2

∂2Vc
λ

∂B2
λ

− rVc
λ = 0, (1)

where the final condition is given by

Vc
λ (T, Bλ) = H

(
n

∑
i=1

wiSi(0)e(
r− 1

2 σ2
i )T+σiBλ

)
. (2)
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Another PDE for the comonotonic basket derivative price

The PDE in terms of the comonotonic basket:

∂Vc

∂t′
+

1
2
(σc(t, B))2 ∂2Vc

∂ (Sc)2 + rSc ∂Vc

∂Sc − rVc = 0.

The final condition:
Vc(T, Sc) = H(Sc).

Remarks:
I Similar to the Black & Scholes PDE for one-dimensional derivative

pricing.

I Time-dependent volatility slows down the calculations.
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The solution of the comonotonic PDE

Theorem

Closed-form solution forVc
λ (t, Bλ):

Vc
λ (t, Bλ) = e−r(T−t)

∫ +∞

−∞
H

(
n

∑
i=1

wiSc
i (t)e

(r− 1
2 σ2

i )(T−t)+σiy

)
φT−t(y)dy, (3)

where Sc
i (t) is given by

Sc
i (t) = Si(0)e(

r− 1
2 σ2

i )t+σiBλ(t), for i = 1, 2, . . . , n, (4)

and φT−t is the density of a normal distribution with mean 0 and variance T− t:

φT−t(y) =
e
− y2

2(T−t)√
2π(T− t)

.
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The solution of the comonotonic PDE

Weighted pay-off:
I future realization of the increment of the process Bλ in [t, T] = y;

I pay-off: H
(

∑n
i=1 wiSc

i (t)e
(r− 1

2 σ2
i )(T−t)+σiy

)
;

I Gaussian density in y:

g(y) =
1√

2π(T− t)
e
− y2

2(T−t) .

Conclusion:
I We determine the price Vc

λ(t, Bλ) by integrating over all future states
of the process Bλ;

I weighted by the corresponding Gaussian probabilities.
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The distribution of the comonotonic basket

Theorem

The price Vc(t, Sc) is given by

Vc(t, Sc) = e−r(T−t)
∫ +∞

0
fSc(S′; T, t)H(S′)dS′,

where

fSc(S′; T, t) =
1√

2π(T− t)
e−

(Φ−1(FSc (S′ ;T,t)))
2

2

∑n
i=1 σiwiSc

i (t)e
(r− 1

2 σ2
i )(T−t)+σi

√
T−tΦ−1(FSc (S′ ;T,t))

,

is the time-t risk-neutral density of the comonotonic basket Sc(T) and
FSc(S′; T, t) is the solution of:

n

∑
i=1

wiSc
i (t)e

(r− 1
2 σ2

i )(T−t)+σi
√

T−tΦ−1(FSc (S′ ;T,t)) = S′.
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Pricing formulas

The price Vc(t, Sc):
I is an integral over all future realizations of the comonotonic basket

Sc(T);

I weighted using the risk-neutral density;

I is the discounted risk-neutral expectation.

The price Vc
λ(t, Bλ):

I is an integral over all future realizations of the risk factor Bλ(T);

I weighted using a Gaussian density;

I is the solution of a partial differential equation.
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A price Vc
λ can be obtained by numerically solving the PDE:

∂Vc
λ

∂t
+

1
2

∂2Vc
λ

∂B2
λ

− rVc
λ = 0 (5)

Discretisation:
I Time grid:

tk = T− kδt, for k = 0, 1, . . . , L.

I Brownian motion grid:

bj = (j− I)δB, j = 0, 1, . . . , J.

We determine basket derivative prices on the grid points:

Vk
j ≡ Vc

λ(tk, bj).
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Basket derivative prices at the maturity end points:

V0
j = H

(
n

∑
i=1

wiSi(0)e(
r− 1

2 σ2
i )T+σibj

)
. (6)

Backwards explicit scheme:

Vk+1
j =

1
2

δt
δB2 Vk

j−1 +

(
1− rδt− δt

δB2

)
Vk

j +
1
2

δt
δB2 Vk

j+1 +O(δt; δB2),

for j = 1, ..., J− 1 and k = 1, ..., L.
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Remarks

This scheme is
I easy to implement;

I converges to the real solution.

Stability criterium:

δt ≤ 2δB2

rδB2 + 2
.

Increasing the accuracy:
I Decrease the step size δB;

I Increase the number of points J in the grid for the Brownian motion.
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comonotonic American options

American-type option:
I The option can be exercised prior to maturity.

Finite difference scheme for pricing American-type derivatives:
I Time grid: 0 = tL < tL−1 < . . . < t1 < t0 = T.

I Assume: All prices are determined for t > tk.

I Goal: Determine the prices for tk+1.

In the interval [tk+1, tk] there are two possibilities:
I Possibility 1: The derivative is not exercised at time tk+1.

I Possibility 2: The derivative is exercised at time tk+1.
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comonotonic American options

Possibility 1: The derivative is not exercises at time tk+1.

I The derivative behaves as a European-type derivative in [tk+1, tk].

I The price Ṽk+1
j satisfies:

Ṽk+1
j ≈ 1

2
δt

δB2 Vk
j−1 +

(
1− rδt− δt

δB2

)
Vk

j +
1
2

δt
δB2 Vk

j+1.

Possibility 2: The derivative is exercised at time tk+1.
I We receive the payoff:

H
(

Sk+1
j

)
.

American-type derivative price in the node (j, k + 1):

Vk+1
j = max

{
Ṽk+1

j , H
(

Sk+1
j

)}
.
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Approximating the financial market

In a comonotonic market:
I one risk-factor drives all stocks, the basket and the derivative prices;

I basket derivative pricing is fast and efficient:
F closed form expressions;

F efficient comonotonic finite difference scheme.

The real market situation:
I the financial market is in general not comonotonic;

I correlations are not equal to one;

I assumption4: ρi,j > 0.

Conclusion:

We didn’t solve the complete problem!

4our methodology can be generalized such that this assumption can be relaxed.



5 – Approximate basket derivative pricing 33/45

Approximating the financial market

Problem:
I Determine the price V(t) of a basket derivative;

I where the components of the basket are correlated.

We construct an artificial financial market:
I the artificial market is required to be comonotonic:

F closed-form expressions for basket derivative prices are available;

I but: the stocks in the artificial market have an adjusted volatility:
F the basket derivative price in the artificial market should be ‘close’ to

the real price V.
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Approximating the financial market

The artificial financial market:

dSl
i (t)

Sl
i (t)

= µidt + νiσidB(t), for t > 0 and i = 1, 2, . . . , n,

where5

νi =
∑n

j=1 wjSj(0)ρi,jσj√
∑n

j=1 ∑n
k=1 wjwkSj(0)Sk(0)ρj,kσjσk

, for i = 1, 2, . . . , n.

Remarks:
I 0 < νi ≤ 1.

I Adjusted volatility: riσi ≤ σi.

5other choices are possible: Deelstra, Liinev & Vanmaele (2004) and Hainaut &
Deelstra (2014).
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Approximating the financial market

The marginal stock price process
{

Sl
i(t)| t ≥ 0

}
I are following a Black & Scholes model;

I but: with adjusted volatility parameter.

Dependence = comonotonic copula
I the artificial market is driven by the single Brownian motion B;

I basket derivative pricing is fast and efficient:
F closed-form solutions are available (single integration);

F numerical methods are fast and accurate (comonotonic finite difference
scheme).
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Final approximation

Approximate basket:

Sl(t) = w1Sl
1(t) + w2Sl

2(t) + . . . + wnSl
n(t).

Basket derivative price:

Vl(t, S).
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Illustration

Table: Input parameters for the four-stock basket with Correlation ρ = 0.3.

stock 1 stock 2 stock 3 stock 4

σi 0.5 0.2 0.8 0.9
Sj(0) 100 100 100 100

wi 0.25 0.25 0.25 0.25
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Illustration
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Illustration
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Figure: The approximation Vl for the basket option price V in function of the spot
price S(0) and the time-to-maturity T, together with the corresponding ∆ of Vl.
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Final approximation

Final approximation for the European basket put option6:

V̄(t, S1, S2, . . . , Sn) = zVl(t, S) + (1− z)Vc(t, S),

where

z =
Vart [Sc(T)]− Vart [S(T)]
Vart [Sc(T)]− Vart [Sl(T)]

∈ [0, 1].

The approximation V̄ satisfies:∫ ∞

0
V̄dK =

∫ ∞

0
VdK.

6Vyncke, Goovaerts & Dhaene (2004)
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Illustration

Goal: Determine the price of an American-type Basket put option.
I Use Least-squares Monte Carlo Simulation to approximate the real

price.

I Use the approximation V̄.



6 – Pricing American basket options 42/45

Table: American-type basket put option prices on a basket of 8 equally weighted
stocks with initial prices 40 computed using finite difference (FD) method and the
LSM.

Maturity Strike σ1 ρ FD prices LSM prices time FD time LSM

2 35 0.3 0.3 4.035 3.974 37 729
0.8 6.196 6.183 37 2374

0.9 0.3 4.978 4.954 167 3028
0.8 7.481 7.477 163 3454

40 0.3 0.3 6.775 6.704 169 4023
0.8 9.204 9.176 165 4148

0.9 0.3 7.822 7.814 167 4055
0.8 10.614 10.594 163 4245

45 0.3 0.3 10.065 10.011 170 4990
0.8 12.602 12.576 165 4862

0.9 0.3 11.136 11.130 167 4911
0.8 14.075 14.049 164 4836
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Table: American-type basket put option prices on a basket of 4 equally weighted
stocks with initial prices 40 for high pairwise correlations.

Pairwise correlation FD prices LSM prices Comonotonic LSM

0.95 7.427 7.433 –
0.96 7.452 7.444 –
0.97 7.476 7.476 –
0.98 7.500 7.511 –
0.99 7.524 8.670 –

0.992 7.529 10.250 –
0.994 7.534 10.234 –
0.996 7.538 14.702 –
0.998 7.543 17.212 –
1.000 7.548 259.274 7.550
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