Natural hedges with immunization strategies of mortality and interest rates

Cary Chi-Liang Tsai (with Dr. Tzuling Lin)

Department of Statistical and Actuarial Science
Simon Fraser University, British Columbia, Canada

Snell Actuarial Science and Risk Management Seminar Series
Department of Finance
University of Nebraska-Lincoln, U.S.A.
September 6th, 2019
OUTLINE

1 INTEREST IMMUNIZATION

2 NATURAL HEDGES WITH MORTALITY IMMUNIZATION STRATEGIES

3 NATURAL HEDGES WITH MORTALITY-INTEREST IMMUNIZATION STRATEGIES

4 CONCLUSIONS
Durations and convexity for interest (yield)

In finance, dollar duration measures the sensitivity of the price of an asset or liability with respect to a constant change in the interest rate, and convexity measures the curvature or the second derivative of the price.

Let $P(\delta) = \sum_{k=1}^{n} C_k \times e^{-\delta \cdot k}$ be the price of a financial security at time 0 with cash flows C_k at time k, $k = 1, \ldots, n$.

- **Dollar Duration** $DD_\delta [P(\delta)] = -\frac{\partial P(\delta)}{\partial \delta} = \sum_{k=1}^{n} k \times C_k \times e^{-\delta \cdot k}$

- **Dollar Convexity** $DC_\delta [P(\delta)] = \frac{\partial^2 P(\delta)}{\partial \delta^2} = \sum_{k=1}^{n} k^2 \times C_k \times e^{-\delta \cdot k}$

Macaulay duration $MD_\delta [P(\delta)] = DD_\delta [P(\delta)]/(\delta) = -\frac{d P(\delta)/P(\delta)}{d \delta}$ measures the sensitivity of the yield (rate of price change) with respect to a constant change in the interest rate.
Immunization of interest rate risk

Figure: cash flows \(\{L_k : k = 1, \ldots, n\} \) and \(\{A_k : k = 1, \ldots, n\} \)

\[
L(\delta) = \sum_{k=1}^{n} L_k \times e^{-\delta \cdot k} \quad \text{and} \quad A(\delta) = \sum_{k=1}^{n} A_k \times e^{-\delta \cdot k}
\]
at time 0, where \(\delta = \ln(1 + i) \) is the force of interest and \(i \) is the interest rate.

Interest rate immunization: both \(L(\delta) \) and \(A(\delta) \) change to \(L(\delta + \gamma) \) and \(A(\delta + \gamma) \) when \(\delta \) shifts to \(\delta + \gamma \).

We want to allocate \(\{A_k : k = 1, \ldots, n\} \) such that

\[
A(\delta + \gamma) - A(\delta) = \Delta A(\gamma) \approx \Delta L(\gamma) = L(\delta + \gamma) - L(\delta),
\]
that is, the interest rate risk is immunized.
Duration matching

\[
\Delta A_{\gamma}(\delta) = \frac{A(\delta + \gamma) - A(\delta)}{\gamma} \cdot \gamma \approx \frac{\partial A(\delta)}{\partial \delta} \cdot \gamma,
\]

\[
\Delta L_{\gamma}(\delta) = \frac{L(\delta + \gamma) - L(\delta)}{\gamma} \cdot \gamma \approx \frac{\partial L(\delta)}{\partial \delta} \cdot \gamma,
\]

\[
\Delta A_{\gamma}(\delta) = \Delta L_{\gamma}(\delta) \Rightarrow \frac{\partial A(\delta)}{\partial \delta} = \frac{\partial L(\delta)}{\partial \delta},
\]

that is, dollar duration of \(A(\delta) = \) dollar duration of \(L(\delta) \). Then the interest rate risk of the liabilities is immunized by duration matching.
Effective Duration and Convexity

Let \(P(\delta) = \sum_{k=1}^{n} C_k \times e^{-\delta \cdot k} \) and \(P(\tilde{\delta}) = \sum_{k=1}^{n} C_k \times e^{-\sum_{i=0}^{k-1} \delta_i} \) where \(\delta_i \) is the force of interest for the \((i + 1)^{th}\) year or the period \([i, i + 1]\) and \(\tilde{\delta} = (\delta_0, \delta_1, \ldots, \delta_{n-1}) \).

- Dollar duration \(DD_{\delta}[P(\delta)] = -\frac{\partial P(\delta)}{\partial \delta} \)
- Dollar convexity \(DC_{\delta}[P(\delta)] = \frac{\partial^2 P(\delta)}{\partial \delta^2} \)
- Effective dollar duration \(EDD_{\gamma}[P(\tilde{\delta})] = -\frac{P(\tilde{\delta} + \gamma) - P(\tilde{\delta} - \gamma)}{2 \cdot \gamma} \)
- Effective dollar convexity

\[
EDC_{\gamma}[P(\tilde{\delta})] = \frac{P(\tilde{\delta} + \gamma) + P(\tilde{\delta} - \gamma) - 2 \cdot P(\delta)}{\gamma^2} - \frac{P(\tilde{\delta} + \gamma) - P(\delta) - P(\delta) - P(\tilde{\delta} - \gamma)}{\gamma}
\]
Alternative derivation for dollar duration/convexity

\[P(\delta) = \sum_{k=1}^{n} C_k \times e^{-\delta \cdot k} = \sum_{k=1}^{n} C_k \times f_k(\delta) \] where \(f_k(\delta) = e^{-\delta \cdot k} \).

When \(\delta \to \delta + \gamma \), then \(f_k(\delta) \to f_k(\delta + \gamma) = f_k(\delta) \cdot f_k(\gamma) \), and
\[\Delta \gamma f_k(\delta) = f_k(\delta + \gamma) - f_k(\delta) = f_k(\delta) \cdot [f_k(\gamma) - 1]. \]

Expand \(f_k(\gamma) \) to \(f_k(\gamma) \approx 1 + \frac{\partial f_k(\gamma)}{\partial \gamma} \bigg|_{\gamma=0} \cdot \gamma + \frac{\partial^2 f_k(\gamma)}{\partial \gamma^2} \bigg|_{\gamma=0} \cdot \frac{\gamma^2}{2} \).

\[\Delta \gamma f_k(\delta) \approx f_k(\delta) \cdot [-k \cdot \gamma + k^2 \cdot \gamma^2 / 2] = e^{-\delta \cdot k} \cdot [-k \cdot \gamma + k^2 \cdot \gamma^2 / 2]. \]

\[\Delta \gamma P(\delta) = P(\delta + \gamma) - P(\delta) = \sum_{k=1}^{n} C_k \cdot \Delta \gamma f_k(\delta) \]
\[\approx \sum_{k=1}^{n} C_k \cdot e^{-\delta \cdot k} \cdot [-k \cdot \gamma + k^2 \cdot \gamma^2 / 2] \]
\[\approx -\left[\sum_{k=1}^{n} k \cdot C_k \cdot e^{-\delta \cdot k} \right] \cdot \gamma + \left[\sum_{k=1}^{n} k^2 \cdot C_k \cdot e^{-\delta \cdot k} \right] \cdot \frac{\gamma^2}{2} \]
\[= -DD_\delta [P(\delta)] \cdot \gamma + DC_\delta [P(\delta)] \cdot \gamma^2 / 2. \]
Dollar duration/convexity w.r.t. a constant change in δ

$P(\tilde{\delta}) = \sum_{k=1}^{n} C_k \cdot e^{-\sum_{i=0}^{k-1} \delta_i}$ = $\sum_{k=1}^{n} C_k \cdot f_k(\tilde{\delta})$ where $f_k(\tilde{\delta}) = e^{-\sum_{i=0}^{k-1} \delta_i}$.

When $\tilde{\delta} \to \tilde{\delta} + \gamma$, then $f_k(\tilde{\delta}) \to f_k(\tilde{\delta} + \gamma) = f_k(\tilde{\delta}) \cdot f_k(\gamma)$ where $f_k(\gamma) = e^{-\gamma \cdot k}$, and $\Delta^c f_k(\tilde{\delta}) = f_k(\tilde{\delta} + \gamma) - f_k(\tilde{\delta}) = f_k(\tilde{\delta}) \cdot [f_k(\gamma) - 1]$.

Expand $f_k(\gamma)$ to $f_k(\gamma) \approx 1 + \frac{\partial f_k(\gamma)}{\partial \gamma} \bigg|_{\gamma=0} \cdot \gamma + \frac{\partial^2 f_k(\gamma)}{\partial \gamma^2} \bigg|_{\gamma=0} \cdot \gamma^2 / 2$.

$\Delta^c f_k(\tilde{\delta}) \approx f_k(\tilde{\delta}) \cdot [-k \cdot \gamma + k^2 \cdot \gamma^2 / 2] = e^{-\sum_{i=0}^{k-1} \delta_i} \cdot [-k \cdot \gamma + k^2 \cdot \gamma^2 / 2]$.

$\Delta^c P(\tilde{\delta}) = P(\tilde{\delta} + \gamma) - P(\tilde{\delta}) = \sum_{k=1}^{n} C_k \cdot \Delta^c f_k(\tilde{\delta})$

$\approx \sum_{k=1}^{n} C_k \cdot e^{-\sum_{i=0}^{k-1} \delta_i} \cdot [-k \cdot \gamma + k^2 \cdot \gamma^2 / 2]$.

$\approx -\left[\sum_{k=1}^{n} k \cdot C_k \cdot e^{-\sum_{i=0}^{k-1} \delta_i}\right] \cdot \gamma + \left[\sum_{k=1}^{n} k^2 \cdot C_k \cdot e^{-\sum_{i=0}^{k-1} \delta_i}\right] \cdot \gamma^2 / 2$

$= -DD^c_\delta[P(\tilde{\delta})] \cdot \gamma + DC^c_\delta[P(\tilde{\delta})] \cdot \gamma^2 / 2.$
Dollar duration/convexity w.r.t. a proportional shift in \(\tilde{\delta} \)

\[P(\tilde{\delta}) = \sum_{k=1}^{n} C_k \cdot e^{-\sum_{i=0}^{k-1} \delta_i} = \sum_{k=1}^{n} C_k \cdot f_k(\tilde{\delta}) \]
where
\[f_k(\tilde{\delta}) = e^{-\sum_{i=0}^{k-1} \delta_i}. \]

When \(\tilde{\delta} \rightarrow (1 + \gamma) \cdot \tilde{\delta}, \) then
\[f_k(\tilde{\delta}) \rightarrow f_k((1 + \gamma) \cdot \tilde{\delta}) = [f_k(\tilde{\delta})]^{1+\gamma}, \] and
\[\Delta_p^\gamma f_k(\tilde{\delta}) = f_k((1 + \gamma) \cdot \tilde{\delta}) - f_k(\tilde{\delta}) = f_k(\tilde{\delta}) \cdot \{[f_k(\tilde{\delta})]^\gamma - 1\}. \]

Expand \([f_k(\tilde{\delta})]^\gamma\) to \([f_k(\tilde{\delta})]^\gamma \approx 1 + \frac{\partial [f_k(\tilde{\delta})]^\gamma}{\partial \gamma} \biggr|_{\gamma=0} \cdot \gamma + \frac{\partial^2 [f_k(\tilde{\delta})]^\gamma}{\partial \gamma^2} \biggr|_{\gamma=0} \cdot \frac{\gamma^2}{2}. \]

\[\Delta_p^\gamma f_k(\tilde{\delta}) \approx e^{-\sum_{i=0}^{k-1} \delta_i} \cdot \left\{ -\left[\sum_{i=0}^{k-1} \delta_i\right] \cdot \gamma + \left[\sum_{i=0}^{k-1} \delta_i\right]^2 \cdot \frac{\gamma^2}{2} \right\}. \]

\[\Delta^\gamma_p P(\tilde{\delta}) = P((1 + \gamma) \cdot \tilde{\delta}) - P(\tilde{\delta}) = \sum_{k=1}^{n} C_k \cdot \Delta^\gamma_p f_k(\tilde{\delta}) \]

\[\approx \sum_{k=1}^{n} C_k \cdot e^{-\sum_{i=0}^{k-1} \delta_i} \cdot \left\{ -\left[\sum_{i=0}^{k-1} \delta_i\right] \cdot \gamma + \left[\sum_{i=0}^{k-1} \delta_i\right]^2 \cdot \frac{\gamma^2}{2} \right\} \]

\[\approx -\left[\sum_{k=1}^{n} \left(\sum_{i=0}^{k-1} \delta_i\right) \cdot C_k \cdot e^{-\sum_{i=0}^{k-1} \delta_i}\right] \cdot \gamma + \left[\sum_{k=1}^{n} \left(\sum_{i=0}^{k-1} \delta_i\right)^2 \cdot C_k \cdot e^{-\sum_{i=0}^{k-1} \delta_i}\right] \cdot \frac{\gamma^2}{2} \]

\[= -DD^p_\delta[P(\tilde{\delta})] \cdot \gamma + DC^p_\delta[P(\tilde{\delta})] \cdot \gamma^2/2. \]
The net single premium of a more general annuity product - the h-year deferred and j-year life annuity-due, issued to (x) in year t, assuming piecewise constant force of mortality \((\mu_x, t(s) = \mu_{x+i}, t+i, s \in [i, i+1]) \),

\[
\begin{align*}
 h|\ddot{a}_x, t: j| &= \sum_{k=h}^{h+j-1} kp_x, t \cdot e^{-\delta \cdot k} = \sum_{k=h}^{h+j-1} e^{-\int_0^k \mu_x, t(s) \, ds} \cdot e^{-\delta \cdot k} = \\
 &= \sum_{k=h}^{h+j-1} e^{-\sum_{i=0}^{k-1} \mu_{x+i}, t+i} \cdot e^{-\delta \cdot k},
\end{align*}
\]

where \(kp_x, t = p_x, t \times \cdots \times p_{x+k-1}, t+k-1 \).

- \((h, j) = (0, n) \Rightarrow \ddot{a}_x, t: \overline{n} \),
- \((h, j) = (n, 1) \Rightarrow nEx, t \),
- \((h, j) = (n, \infty) \Rightarrow n|\ddot{a}_x, t \),
- \((h, j) = (0, \infty) \Rightarrow \ddot{a}_x, t \).

The NSP of life insurance can be expressed in terms of NSPs of \(h|\ddot{a}_x, t: j| \):

- \(A_x, t: \overline{n} = 1 - d \cdot \ddot{a}_x, t: \overline{n} \),
- \(A_x, t = 1 - d \cdot \ddot{a}_x, t \),
- \(A^1_x, t: \overline{n} = A_x, t: \overline{n} - nEx, t = 1 - d \cdot \ddot{a}_x, t: \overline{n} - nEx, t \).
Relational models

Let $\tilde{\mu}_{x,t} = \{\mu_{x,t}(i) = \mu_{x+i,t+i} : i = 0, 1, \cdots\}$ be a force of morality sequence, starting age x in year t.

Linear relational model (Tsai and Yang (2015))

$$\tilde{\mu}_{x,t}^B = (1 + \alpha) \times \tilde{\mu}_{x,t}^A + \beta + e_{x,t}.$$

When $\tilde{\mu}_{x,t}$ is shifted proportionally to $(1 + \alpha) \cdot \tilde{\mu}_{x,t}$ and moved constantly to $\tilde{\mu}_{x,t}^\bullet = (1 + \alpha) \cdot \tilde{\mu}_{x,t} + \beta$, then $k p_{x,t}$ is changed to

$$kp_{x,t}^\bullet = kp_{x,t} \cdot \left(kp_{x,t} \right)^\alpha \cdot e^{-\beta \cdot k} = kp_{x,t} \cdot f_{\tilde{\mu}_{x,t}}^p(\alpha) \cdot f_{\tilde{\mu}_{x,t}}^c(\beta).$$

- $\beta = 0$ (a proportional change only): $kp_{x,t}^\bullet = kp_{x,t} \cdot f_{\tilde{\mu}_{x,t}}^p(\alpha)$ and $\Delta kp_{x,t} = kp_{x,t}^\bullet - kp_{x,t} = kp_{x,t} \cdot [f_{\tilde{\mu}_{x,t}}^p(\alpha) - 1]$ with $f_{\tilde{\mu}_{x,t}}^p(0) = 1$.
- $\alpha = 0$ (a constant change only): $kp_{x,t}^\bullet = kp_{x,t} \cdot f_{\tilde{\mu}_{x,t}}^c(\beta)$ and $\Delta kp_{x,t} = kp_{x,t}^\bullet - kp_{x,t} = kp_{x,t} \cdot [f_{\tilde{\mu}_{x,t}}^c(\beta) - 1]$ with $f_{\tilde{\mu}_{x,t}}^c(0) = 1$.

\(\tilde{\mu}_{30, 1989+n} \) AGAINST \(\tilde{\mu}_{30, 1989} \) FOR UK MALES
A realized/simulated $\tilde{\mu}_{25,2010}$ against the expected $\tilde{\mu}_{25,2010}$ for US males
Taylor's expansion of \(f_{\tilde{\mu}_x, t}(\gamma), (\lambda, \gamma) = (p, \alpha), (c, \beta) \)

\[
f_{\tilde{\mu}_x, t}(\gamma) \approx f_{\tilde{\mu}_x, t}(0) + \left. \frac{\partial f_{\tilde{\mu}_x, t}(\gamma)}{\partial \gamma} \right|_{\gamma=0} \cdot \gamma + \left. \frac{\partial^2 f_{\tilde{\mu}_x, t}(\gamma)}{\partial \gamma^2} \right|_{\gamma=0} \cdot \frac{\gamma^2}{2}. \]

\[
\triangle_{kp_x, t} = kp_x, t \cdot [f_{\tilde{\mu}_x, t}(\gamma) - 1] \approx kp_x, t [d\lambda(k) \cdot \gamma + c\lambda(k) \cdot \gamma^2/2], \text{ where}
\]

\[
d\lambda(k) = \left[\frac{\partial f_{\tilde{\mu}_x, t}(\gamma)}{\partial \gamma} \right]_{\gamma=0} = \begin{cases} \ln(kp_x, t), & \lambda = p, \\ -k, & \lambda = c; \end{cases} \text{ and}
\]

\[
c\lambda(k) = \left[\frac{\partial^2 f_{\tilde{\mu}_x, t}(\gamma)}{\partial \gamma^2} \right]_{\gamma=0} = \begin{cases} [\ln(kp_x, t)]^2, & \lambda = p, \\ k^2, & \lambda = c. \end{cases} = [d\lambda(k)]^2.
\]

\[
\Delta_h|\ddot{a}_{x, t: j}| = h|\dddot{a}_{x, t: j}| - h|\dddot{a}_{x, t: j}| = \sum_{k=h}^{h+j-1} \triangle_{kp_x, t} \cdot e^{-\delta \cdot k}
\]

\[
\approx D\lambda[h|\dddot{a}_{x, t: j}|(\tilde{\mu}_x, t)] \cdot \gamma + C\lambda[h|\dddot{a}_{x, t: j}|(\tilde{\mu}_x, t)] \cdot \gamma^2/2, \text{ where}
\]

\[
B^\lambda[h|\dddot{a}_{x, t: j}|(\tilde{\mu}_x, t)] = \sum_{k=h}^{h+j-1} b\lambda(k) \cdot kp_x, t \cdot e^{-\delta \cdot k} \text{ is called mortality duration for (B, b) = (D, d) (convexity for (B, b) = (C, c)) w.r.t. an instantaneously proportional (}\lambda = p\) \text{ or constant (}\lambda = c\) \text{ change in } \tilde{\mu}_x, t.
\]

Insurance Portfolio P^{LA} of Two Policies

P^{LA}: discrete life insurance and an annuity with weights w_L and $w_A = 1 - w_L$, respectively; the weighted surplus (negative reserve) at time 0 is

$$0S_{x, t}^{LA} = w_L \cdot 0S_{x_l}^{PL} + (1 - w_L) \cdot 0S_{x_a}^{DA} = 0$$

- $0S_{x_l}^{PL} = m(\tilde{\mu}_{x_l}, t) - A_{x_l}(\tilde{\mu}_{x_l}, t) = 0$ is the surplus at time 0 for a discrete m-payment whole life insurance;
- $0S_{x_a}^{DA} = n(\tilde{\mu}_{x_a}, t) - \tilde{\mu}_{x_a}(\tilde{\mu}_{x_a}, t) = 0$ is the surplus at time 0 for an n-year deferred whole life annuity-due;

When both $\tilde{\mu}_{x_l}, t$ and $\tilde{\mu}_{x_a}, t$ are shifted proportionally by γ or moved constantly by γ, the changes in $0S_{x, t}^{LA}$, $0S_{x_l}^{PL}$, and $0S_{x_a}^{DA}$ are

$$\triangle \lambda 0S_{x, t}^{LA} = w_L \cdot \triangle \lambda 0S_{x_l}^{PL} + (1 - w_L) \cdot \triangle \lambda 0S_{x_a}^{DA}$$

$$\triangle \lambda 0S_{x_l}^{PL} = D^{\lambda}[0S_{x_l}^{PL}(\tilde{\mu}_{x_l}, t)] \cdot \gamma + C^{\lambda}[0S_{x_l}^{PL}(\tilde{\mu}_{x_l}, t)] \cdot \gamma^2 / 2,$$

$$\triangle \lambda 0S_{x_a}^{DA} = D^{\lambda}[0S_{x_a}^{DA}(\tilde{\mu}_{x_a}, t)] \cdot \gamma + C^{\lambda}[0S_{x_a}^{DA}(\tilde{\mu}_{x_a}, t)] \cdot \gamma^2 / 2.$$
Matching strategy $B^\lambda(\bar{\mu}_x, t)$ based on \hat{w}_L

$$\triangle^\lambda S^L_{x,t} = w_L \cdot \triangle^\lambda S^{PL}_{x_l, t} : m(\bar{\mu}_{x_l}, t) + (1 - w_L) \cdot \triangle^\lambda S^{DA}_{x_a, t} : n(\bar{\mu}_{x_a}, t)$$

$$\approx \{ w_L \cdot D^\lambda [0 S^{PL}_{x_l, t} : m(\bar{\mu}_{x_l}, t)] + (1 - w_L) \cdot D^\lambda [0 S^{DA}_{x_a, t} : n(\bar{\mu}_{x_a}, t)] \} \gamma$$

$$+ \{ w_L \cdot C^\lambda [0 S^{PL}_{x_l, t} : m(\bar{\mu}_{x_l}, t)] + (1 - w_L) \cdot C^\lambda [0 S^{DA}_{x_a, t} : n(\bar{\mu}_{x_a}, t)] \} \frac{\gamma^2}{2}.$$

Find \hat{w}_L such that $\triangle^\lambda S^L_{x,t} \approx 0$ (that is, the life insurance portfolio is immunized with respect to a change in mortality rates).

$$w^*_L \cdot B^\lambda [0 S^{PL}_{x_l, t} : m(\bar{\mu}_{x_l}, t)] + (1 - w_L) \cdot B^\lambda [0 S^{DA}_{x_a, t} : n(\bar{\mu}_{x_a}, t)] = 0$$

$$\Rightarrow \hat{w}_L = \frac{B^\lambda [0 S^{DA}_{x_a, t} : n(\bar{\mu}_{x_a}, t)]}{B^\lambda [0 S^{DA}_{x_a, t} : n(\bar{\mu}_{x_a}, t)] - B^\lambda [0 S^{PL}_{x_l, t} : m(\bar{\mu}_{x_l}, t)]} \cdot \frac{1}{1 - B^\lambda [0 S^{PL}_{x_l, t} : m(\bar{\mu}_{x_l}, t)]/B^\lambda [0 S^{DA}_{x_a, t} : n(\bar{\mu}_{x_a}, t)]},$$

where

$$B^\lambda [0 S^{PL}_{x_l, t} : m(\bar{\mu}_{x_l}, t)] = P^{PL}_{x_l, t} : m \cdot B^\lambda [\bar{a}_{x_l, t} : \bar{m}](\bar{\mu}_{x_l}, t) - B^\lambda [A_{x_l, t} : (\bar{\mu}_{x_l}, t)],$$

$$B^\lambda [0 S^{DA}_{x_a, t} : n(\bar{\mu}_{x_a}, t)] = P^{DA}_{x_a, t} : n \cdot B^\lambda [\bar{a}_{x_a, t} : \bar{n}](\bar{\mu}_{x_a}, t) - B^\lambda [n \bar{a}_{x_a, t} : (\bar{\mu}_{x_a}, t)],$$

and $B^\lambda = D^\lambda (C^\lambda)$ for mortality duration (convexity) matching w.r.t. an instantaneously proportional ($\lambda = p$) or constant ($\lambda = c$) change in $\bar{\mu}_x, t$.

Insurance Portfolio P^{LA} **of Multiple Policies**

P^{LA}: discrete life insurance and an annuity with weights w_L and $w_A = 1 - w_L$, respectively; the weighted surplus (negative reserve) at time 0 is

$$0S_{x,t}^{LA} = w_L \cdot \sum_{x \in X_l} p_x^{PL} \cdot 0S_{x,t}^{PL} \cdot m(\tilde{\mu}_x, t) + (1 - w_L) \cdot \sum_{x \in X_a} p_x^{DA} \cdot 0S_{x,t}^{DA} \cdot n(\tilde{\mu}_x, t) = 0,$$

where p_x^{PL} and p_x^{DA} are the percentages or numbers of life and annuity policyholders aged x, respectively.

$$\hat{W}_L^* = \frac{B^\lambda [\sum_{x \in X_a} p_x^{DA} \cdot 0S_{x,t}^{DA} \cdot n(\tilde{\mu}_x, t)]}{B^\lambda [\sum_{x \in X_a} p_x^{DA} \cdot 0S_{x,t}^{DA} \cdot n(\tilde{\mu}_x, t)] - B^\lambda [\sum_{x \in X_l} p_x^{PL} \cdot 0S_{x,t}^{PL} \cdot m(\tilde{\mu}_x, t)]},$$

where

$$B^\lambda [\sum_{x \in X_a} p_x^{DA} \cdot 0S_{x,t}^{DA} \cdot n(\tilde{\mu}_x, t)] = \sum_{x \in X_a} p_x^{DA} \cdot B^\lambda [0S_{x,t}^{DA} \cdot n(\tilde{\mu}_x, t)],$$

$$B^\lambda [\sum_{x \in X_l} p_x^{PL} \cdot 0S_{x,t}^{PL} \cdot m(\tilde{\mu}_x, t)] = \sum_{x \in X_l} p_x^{PL} \cdot B^\lambda [0S_{x,t}^{PL} \cdot m(\tilde{\mu}_x, t)],$$

by linearity preservation property of B^λ.
Force of mortality-interest \(\mu_{x,t}(i) = \mu_{x,t}(i) + \delta_i \)

\[
\begin{align*}
\dot{h \mid a_x, t: j} &= \sum_{k=h}^{h+j-1} k p_{x,t} \cdot e^{-\int_0^k \delta_s \, ds} = \sum_{k=h}^{h+j-1} e^{-\int_0^k \mu_{x,t}(s) \, ds} \cdot e^{-\int_0^k \delta_s \, ds} \\
&= \sum_{k=h}^{h+j-1} e^{-\int_0^k \mu_{x,t}(s) + \delta_s \, ds} = \sum_{k=h}^{h+j-1} e^{-\sum_{i=0}^{k-1} \mu_{x,t}(i) + \delta_i} \\
&= \sum_{k=h}^{h+j-1} e^{-\sum_{i=0}^{k-1} \mu_{x,t}(i)} = \sum_{k=h}^{h+j-1} k p_{x,t}^{*},
\end{align*}
\]

where \(\mu_{x,t}(i) = \mu_{x,t}(i) + \delta_i \).

\(B^\lambda[h \mid a_x, t: j](\tilde{\mu}_{x,t}) = \sum_{k=h}^{h+j-1} b^\lambda(k) \cdot k p_{x,t}^{*} \) is called mortality-interest duration for \((B, b) = (D, d)\) (convexity for \((B, b) = (C, c)\)) w.r.t. an instantaneously proportional \(\lambda = p\) or constant \(\lambda = c\) change in \(\tilde{\mu}_{x,t}\),

where \(d^\lambda(k) = \left\{ \begin{array}{ll}
\ln(k p_{x,t}^{*}), & \lambda = p, \\
-k, & \lambda = c;
\end{array} \right. \) and \(c^\lambda(k) = [d^\lambda(k)]^2\).
A realized/simulated $\tilde{\mu}_{x,t}^*$ vs the expected $\tilde{\mu}_{x,t}^*$

Figure: Left: $x = 50$; Right: $x = 60$

Matching strategy $B^\lambda(\tilde{\mu}^*_x, t)$ based on \hat{w}_L^*

\[
\hat{w}_L^* = \frac{B^\lambda \left[\sum_{x \in X_a} p_x^{DA} \cdot 0 S_x^{DA} \cdot n(\tilde{\mu}^*_x, t) \right]}{B^\lambda \left[\sum_{x \in X_a} p_x^{DA} \cdot 0 S_x^{DA} \cdot n(\tilde{\mu}^*_x, t) \right] - B^\lambda \left[\sum_{x \in X_l} p_x^{PL} \cdot 0 S_x^{PL} \cdot m(\tilde{\mu}^*_x, t) \right]},
\]

where $B^\lambda = D^\lambda \ (C^\lambda)$ for mortality-interest duration (convexity) matching w.r.t. an instantaneously proportional ($\lambda = p$) or constant ($\lambda = c$) change in $\tilde{\mu}^*_x, t$.

Six matching strategies for comparison:

- $D^p(\tilde{\mu}^*_x, t)$ with $d^*_p(k) = \ln(k p_x^*, t)$,
- $D^c(\tilde{\mu}^*_x, t) (= D^c(\tilde{\mu}^*_x, t))$ with $d^*_c(k) = d_c(k) = -k$,
- $C^p(\tilde{\mu}^*_x, t)$ with $c^*_p(k) = [\ln(k p_x^*, t)]^2$,
- $C^c(\tilde{\mu}^*_x, t) (= C^c(\tilde{\mu}^*_x, t))$ with $c^*_c(k) = c_c(k) = k^2$,
- $D^p(\tilde{\mu}^*_x, t)$ with $d_p(k) = \ln(k p_x, t)$, and
- $C^p(\tilde{\mu}^*_x, t)$ with $c_p(k) = [\ln(k p_x, t)]^2$.
Two insurance portfolios and \(HE(\sigma^2) \)

Two insurance portfolios \(20P^PL_x \) and \(65−xP^DA_x \):

- \(20P^PL_x \): one-unit discrete 20-payment whole life insurance issued to \((x)\) \((x = 35, 40, 45, 50, 55, 60)\) using US male mortality data, and
- \(65−xP^DA_x \): one-unit \((65x)\)-payment \((65x)\)-year deferred whole life annuity-due issued to \((x)\) using US female mortality data.

\(p_{x, gender} \), percentages (%) of age and gender for two portfolios

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL (Male)</td>
<td>8.39</td>
<td>7.76</td>
<td>8.27</td>
<td>8.44</td>
<td>8.64</td>
<td>7.76</td>
</tr>
<tr>
<td>DA (Female)</td>
<td>8.37</td>
<td>7.85</td>
<td>8.40</td>
<td>8.68</td>
<td>9.06</td>
<td>8.37</td>
</tr>
</tbody>
</table>

Hedge effectiveness w.r.t. variance for mortality risk \(HE_M \) and longevity risk \(HE_L \) are defined as the variance reduction ratio. Specifically,

\[
HE_M(\sigma^2) = \frac{\sigma^2(S^L_0) - \sigma^2(S^P_0)}{\sigma^2(S^L_0)} = 1 - \frac{\sigma^2(S^P_0)}{\sigma^2(S^L_0)} ,
\]

\[
HE_L(\sigma^2) = \frac{\sigma^2(S^A_0) - \sigma^2(S^P_0)}{\sigma^2(S^A_0)} = 1 - \frac{\sigma^2(S^P_0)}{\sigma^2(S^A_0)}.
\]
Summary for simulated surpluses (10,000 policyholders)

Panel A: Two single-product portfolios

<table>
<thead>
<tr>
<th></th>
<th>PL</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{w}_L</td>
<td>1.0000 (largest)</td>
<td>0.0000 (smallest)</td>
</tr>
<tr>
<td>mean</td>
<td>301 (smallest)</td>
<td>6209 (largest)</td>
</tr>
<tr>
<td>std</td>
<td>677 (smallest)</td>
<td>13305 (largest)</td>
</tr>
<tr>
<td>5%-VaR</td>
<td>472 (smallest)</td>
<td>8518 (largest)</td>
</tr>
<tr>
<td>Pr(gain) (%)</td>
<td>57.40</td>
<td>58.10</td>
</tr>
</tbody>
</table>

Panel B: Six matched portfolios

<table>
<thead>
<tr>
<th></th>
<th>$D^c(\tilde{\mu})$</th>
<th>$D^p(\tilde{\mu})$</th>
<th>$C^c(\tilde{\mu})$</th>
<th>$C^p(\tilde{\mu})$</th>
<th>$D^p(\tilde{\mu}^*)$</th>
<th>$C^p(\tilde{\mu}^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\hat{w}_{L}^*</td>
<td>0.9700 < 0.9812 < 0.9854 < 0.9876 < 0.9914 < 0.9999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE_M (%)</td>
<td>−140.69 < −80.82 < −60.85 < −50.56 < −33.87 < −0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>478 > 412 > 387 > 374 > 351 > 301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>std</td>
<td>1050 > 910 > 858 > 830 > 783 > 678</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%-VaR</td>
<td>710 > 622 > 588 > 570 > 540 > 473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr(gain) (%)</td>
<td>57.79 57.70 57.74 57.76 57.57 57.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$D^c(\tilde{\mu}) < D^p(\tilde{\mu}) < C^c(\tilde{\mu}) < C^p(\tilde{\mu}) < D^p(\tilde{\mu}^*) < C^p(\tilde{\mu}^*)$ applies to \hat{w}_L, HE_M and HE_L; and its reversed order applies to mean, standard deviation and 5%-VaR.
Adjusted Formula for Weight \(\hat{w}_L^* \)

\[
\hat{w}_L^* = \frac{B^\lambda [\sum_{x \in x_a} p_x^{DA} \cdot 0S_x^{DA}(\tilde{\mu}^*_x, t)]}{B^\lambda [\sum_{x \in x_a} p_x^{DA} \cdot 0S_x^{DA}(\tilde{\mu}^*_x, t)] - B^\lambda [\sum_{x \in x_l} p_x^{PL} \cdot 0S_x^{PL}(\tilde{\mu}^*_x, t)]}
\]

is based on $1 sum assumed for life insurance and $1 annual payment for all life annuities. If the sum assumed is $SA for life insurance and the annual payment is $AP for all life annuities, then the formula for weight \(\hat{w}_L^* \) is adjusted to

\[
\hat{w}_L^* = \frac{AP \cdot B^\lambda [\sum_{x \in x_a} p_x^{DA} \cdot 0S_x^{DA}(\tilde{\mu}^*_x, t)]}{AP \cdot B^\lambda [\sum_{x \in x_a} p_x^{DA} \cdot 0S_x^{DA}(\tilde{\mu}^*_x, t)] - SA \cdot B^\lambda [\sum_{x \in x_l} p_x^{PL} \cdot 0S_x^{PL}(\tilde{\mu}^*_x, t)]} = \frac{1}{1 - \frac{SA}{AP} \cdot B^\lambda [\sum_{x \in x_l} p_x^{PL} \cdot 0S_x^{PL}(\tilde{\mu}^*_x, t)] / B^\lambda [\sum_{x \in x_a} p_x^{DA} \cdot 0S_x^{DA}(\tilde{\mu}^*_x, t)]}
\]

If \(SA = 300,000 \) and \(AP = 30,000 \) such that \(SA/AP = 10 \) then

<table>
<thead>
<tr>
<th>(SA/AP)</th>
<th>(D^c(\tilde{\mu}))</th>
<th>(D^p(\tilde{\mu}))</th>
<th>(C^c(\tilde{\mu}))</th>
<th>(C^p(\tilde{\mu}))</th>
<th>(D^p(\tilde{\mu}^*))</th>
<th>(C^p(\tilde{\mu}^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9700 <</td>
<td>0.9812 <</td>
<td>0.9854 <</td>
<td>0.9876 <</td>
<td>0.9914 <</td>
<td>0.9999</td>
</tr>
<tr>
<td>10</td>
<td>0.7641 <</td>
<td>0.8394 <</td>
<td>0.8708 <</td>
<td>0.8886 <</td>
<td>0.9204 <</td>
<td>0.9989</td>
</tr>
</tbody>
</table>
Conclusions

- We propose mortality-interest duration and convexity with respect to an instantaneously proportional or constant change in the force of mortality-interest for the first time in the literature.
- Nature hedge with mortality-interest duration and convexity matching strategies can be applied to a portfolio of life and annuity products issued to a group of life insureds and a group of annuitants with different sizes.
- Mortality-interest duration and convexity matching strategies outperform mortality duration and convexity matching strategies in hedging mortality and longevity risks.
The End

Thank You