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This article investigates optimal reinsurance treaties minimizing an insurer’s risk-
adjusted liability, which encompasses a risk margin quantified by distortion risk mea-
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tions. Unlike conventional studies, our results address the issue of (non-)uniqueness
of optimal solutions and indicate that ceded loss functions beyond the traditional in-
surance layers can be optimal in some cases. The usefulness of our novel cost-benefit
approach is further demonstrated by readily solving the dual problem of minimizing
the reinsurance premium while maintaining the risk-adjusted liability below a fixed
tolerance level.
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1 Introduction

The design of optimal reinsurance treaties is a classical and delicate problem that has
aroused sustained interest in academia as well as in industry. Practically, reinsurance is a
popular risk management strategy on which insurers can capitalize to optimize their risk
exposure in accordance with their risk appetite. Technically, optimal reinsurance prob-
lems constitute a class of infinite-dimensional (constrained) optimization problems whose
solution involves the search for an optimal function, in lieu of an optimal parameter value,
and requires unconventional and ingenious techniques. The study of optimal reinsurance
is therefore a research area that is of theoretical and practical importance.

Mathematically, the aggregate ground-up loss faced by an insurer in a certain reference
period is modelled by a non-negative integrable random variable X on a probability space
(Ω,F ,P). Under a reinsurance arrangement, the reinsurer pays f(x) to the insurer, when
x is the realization of X, with the insurer retaining a loss of x − f(x). The function
f : [0, ess sup(X)) → R+, where ess sup(X) is the essential supremumi of X, is known as
the ceded loss function. In return, the insurer is charged the reinsurance premium µ (f(X))
payable to the reinsurer. Therefore, the total retained loss of the insurer corresponding to
a ceded loss function f is

Tf (X) := X − f(X) + µ (f(X)) . (1.1)

Conceivably, ceding more loss to the reinsurer results in the insurer bearing a smaller
retained loss, but a higher reinsurance premium. The problem of optimal reinsurance then
lies in the design of the ceded loss function f within a class of feasible functions to achieve
an optimal level of balance.

A complete description of any optimal reinsurance model requires the specification of four
components: (1) The optimization criterion; (2) The class of feasible ceded loss functions;
(3) The reinsurance premium principle; (4) Constraints, if any, on the reinsurance premium.
Different choices may lead to completely different solutions. In the pioneering work of
Borch (1960), the minimization of the variance of the total retained loss was considered,
and the optimality of stop-loss reinsurance in the class of ceded loss functions having the
same expected reinsurance premium was established. The seminal paper by Arrow (1963),
also under the expectation premium principle, demonstrated that stop-loss reinsurance
maximized the expected utility of an insurer’s terminal wealth when the insurer had a
concave utility function. More recently, Young (1999) and Kaluszka and Okolewski (2008)
generalized Arrow’s result to the cases of Wang’s premium principle and maximum possible
claims principle respectively.

Over the last decade, there was a proliferation of research work centering on risk-measure-

iWe restrict the domain of f to [0, ess sup(X)) rather than R+ because ceding losses beyond the max-
imum size of loss makes no practical sense and hinders the discussion of unique optimal solutions in this
paper.
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based reinsurance models beyond the classical criteria of variance and expected utility,
driven in part by the axiomatic approach to risk measures formally laid in Artzner et al.
(1999) and by the prevalence of risk measures used in insurance companies and banks
for risk assessment. Studies in this direction predominantly revolved around Value-at-
Risk (VaR) and Tail Value-at-Risk (TVaR) as prominent choices of risk measures. Using
these two risk measures, Cai and Tan (2007) derived the optimal retention of a stop-loss
reinsurance analytically under the expectation premium principle. By minimizing the VaR
and TVaR of the total retained loss, Cai et al. (2008) deduced the optimal ceded loss
functions being insurance layers within the class of non-decreasing convex functions via
some sophisticated approximation and convergence arguments. Since then, VaR-based
and TVaR-based reinsurance models continued to receive substantial attention and were
extended in different directions (see Bernard and Tian (2009), Cheung (2010), Chi (2012),
Lu et al. (2013) and Cai and Weng (2014) among others).

In spite of the vast amount of work in the optimal reinsurance literature, the majority of
reinsurance models studied could be justifiably critiqued in the following three substantive
aspects:

1. The optimal reinsurance problems were studied separately under specific risk mea-
sures and reinsurance premium principles. The analysis, which heavily relies on the
risk measure that is chosen as the measurement of risk as well as the premium prin-
ciple that is adopted to price the reinsurance contract, may not carry over to other
reinsurance models. Such a disparate treatment also conceals the general mathe-
matical structure of and inter-relationships between different classes of reinsurance
models. For these reasons, a unified analysis of optimal reinsurance problems covering
a wide class of risk measures and reinsurance premium principles is warranted.

2. Most reinsurance models imposed no constraint on the amount of reinsurance pre-
mium. In reality, profitability concerns may dictate that only a limited budget can
be allocated to reinsurance activities. This realistic constraint effectively undermines
the extent to which an insurer can engage in reinsurance and must be taken into
account when devising the optimal reinsurance strategy.

3. Last but not least, the issue of uniqueness of optimal solutions remains unanswered
in virtually all reinsurance models. Many papers suggest reinsurance layers as the
optimal ceded loss function. However, are reinsurance layers the only possible design
to achieve optimality? For mathematical and practical reasons, it is highly desirable
to identify all optimal reinsurance strategies in a given reinsurance model.

The first and second shortcomings were remedied in a recent paper by Cui et al. (2013),
where the total retained risk of an insurer was measured by distortion risk measures in-
troduced by Yaari (1987) and Wang (1996), a general premium principle was in force, and
a reinsurance premium constraint was also considered. Distortion risk measures not only
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include VaR, TVaR and other well-known risk measures as special cases, but also have far-
reaching applications to decision making under uncertainty. In particular, the perception of
risk they reflect is more consistent with human behavior than what the traditional expected
utility paradigm provides (see Chapter 4 of Quiggin (1993) for some anomalies associated
with expected utility theory). The premium principle considered in Cui et al. (2013) was
also general enough to incorporate a wide class of premium principles, including the ex-
pectation premium principle. By virtue of some complicated partition arguments, Cui
et al. (2013) developed the optimality of reinsurance layers in the class of non-decreasing,
1-Lipschitz ceded loss functions. Based on the techniques in Cui et al. (2013), Zheng and
Cui (2014) and Zheng et al. (2015) tackled the same optimization problem within the class
of non-decreasing and left-continuous retained loss functions, but with the specification of
the expectation premium principle. Because of their high generality, the results in Cui
et al. (2013) arguably represent groundbreaking contributions to the literature of optimal
reinsurance and merit further studies.

In the same spirit as Cui et al. (2013), this paper revisits one-period distortion-risk-measure-
based optimal reinsurance models with reinsurance premium constraints and with ceded
loss functions residing in the class of non-decreasing, 1-Lipschitz functions. This class of
reinsurance treaties not only is more general than that studied in Cai et al. (2008), Che-
ung (2010) and Lu et al. (2013), but also effectively eliminates the issue of moral hazard.
Therefore, it appears to be the most natural feasible set in theory and in practice. Instead
of minimizing the distortion risk measure of the insurer’s total retained risk, we suggest
examining the minimization of his/her risk-adjusted liability (also known as market con-
sistent value of liability; see The Chief Risk Officer Forum (2006)), which is determined
as the sum of the actuarial reserve on the insurer’s total retained risk and a risk margin
quantified by distortion risk measures. In addition to encompassing the models studied in
Cui et al. (2013), the reinsurance model in this paper also enjoys a natural economic inter-
pretation. We refer to the comprehensive introduction in Tsanakas and Christofides (2006)
for the economic versatility of distortion risk measures and to Dowd and Blake (2006) for
specific applications of distortion risk measures to insurance risk problems. By rewrit-
ing the objective function and constraint function in some equivalent integral forms and
introducing an intuitive benefit-to-cost ratio, we dispense with the complicated partition
arguments in Cui et al. (2013) and, more importantly, provide complete solutions to the
distortion-risk-measure-based optimal reinsurance problem. It is shown that the deriva-
tions of optimal solutions amount to comparing the benefit and cost of reinsurance. In
particular, characterizations of the optimal ceded loss functions are provided and all of the
three above-mentioned shortcomings of classical optimal reinsurance models are addressed
in full.

Given the extensive literature on optimal reinsurance, it is instructive to pinpoint the
following highlights of the current article:

1. In many previous contributions such as Cai and Tan (2007), Cai et al. (2008), Bernard
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and Tian (2009), Cai et al. (2013) and Lu et al. (2013), it was routinely assumed that
the ground-up loss X was a continuous random variable with a strictly increasing
cumulative distribution function on the positive real line and a possible jump at
0. Such a distributional assumption, often invoked to simplify the presentation of
optimal solutions, eliminates a variety of loss random variables. In contrast, we
assume in this paper that X is a general random variable, not necessarily continuous
or discrete. Our results, which can be displayed in concise forms, hold in much greater
generality.

2. As opposed to Cui et al. (2013), in which the distortion function and premium func-
tion are assumed to be left-continuous for technical reasons, in this paper we over-
come the technical challenges therein and do not require any continuity assumption
on these functions.

3. In the literature, the standard way to tackle optimal reinsurance problems, as adopted,
for instance, by Cai et al. (2008), Cheung (2010) and Lu et al. (2013), is to reduce
the infinite-dimensional optimization problem to a finite-dimensional one, which can
then be solved by calculus methods. We pursue a radically different approach in
this paper, where we prefer to work in an infinite-dimensional setting. It is in this
high level of generality that the mathematical structure of the reinsurance model,
particularly the benefits and costs associated with reinsurance, is made distinctively
clear. Furthermore, it will be shown in this paper (Theorems 3.1 and 3.3) that the set
of optimal solutions can be infinite-dimensional. Reducing the feasible set of ceded
loss functions to a finite-dimensional set will inevitably result in a loss of optimal
solutions.

4. The cost-benefit approach illustrated in this paper has the following merits:

• By sidestepping the technicalities in Cai et al. (2008), Cui et al. (2013) and Zheng
and Cui (2014), our approach provides a tremendously intuitive and transparent
method to deduce the optimal reinsurance strategies.

• It is flexible in the sense of being applicable to both the constrained and uncon-
strained optimal reinsurance problems.

• It is founded upon the cost-benefit considerations that form the very essence
of optimal reinsurance problems. In this connection, it proves to be a natu-
ral method of solution which aligns considerably better with the character of
optimal reinsurance problems than other solution schemes in the literature.

• It allows us to provide full characterizations of the set of optimal solutions,
which other solution methods may not offer.

The rest of the paper is organized as follows. Section 2 recalls fundamental notions such
as distortion risk measures and generalized inverse functions that are essential to the later
development of this paper, and lays the mathematical formulation of the distortion-risk-
measure-based optimal reinsurance model. Economic interpretations of various quantities
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in the model are also given. In Section 3, we solve the optimal reinsurance problems
with and without a reinsurance premium constraint. The cost-benefit perspective that
underlies the derivations of the optimal solutions is elucidated. Concrete examples involving
well-known risk measures are studied to illustrate the construction of optimal reinsurance
strategies by graphical inspection. Section 4 demonstrates an application of the cost-benefit
technique by solving a dual optimal reinsurance problem. Finally, Section 5 concludes the
paper.

2 Preliminaries

For any non-decreasing right-continuous function ξ : R→ R, we define its generalized left-
continuous inverse function and generalized right-continuous inverse function respectively
by

ξ−1(p) := inf{x ∈ R | ξ(x) ≥ p}

and
ξ−1+(p) := inf{x ∈ R | ξ(x) > p},

with the convention inf ∅ =∞. It is known that the following equivalence holds:

ξ−1(p) ≤ x ⇔ p ≤ ξ(x). (2.1)

If FX is the distribution function of a random variable X, and f is a non-decreasing and
continuous function, then

F−1f(X)(p) = f
(
F−1X (p)

)
and F−1+f(X)(p) = f

(
F−1+X (p)

)
, 0 < p < 1. (2.2)

For more information about generalized inverse functions, see Section 3 of Dhaene et al.
(2002). In the sequel, we denote the indicator function of a given set A by 1A, i.e. 1A(x) = 1
if x ∈ A and 1A(x) = 0 if x /∈ A, and the identity function by Id, i.e. Id(x) = x.

2.1 Mathematical formulation of distortion-risk-measure-based
optimal reinsurance models

Following Chi (2012) and Cai and Weng (2014), in this paper we study the minimization
of an insurer’s risk-adjusted liability, which is comprised of: (1) The actuarial reserve
on the insurer’s total retained risk, namely, E[Tf (X)], where Tf (X) is given in Equation
(1.1) and f is a ceded loss function; (2) A risk margin quantified by means of distortion
risk measures, which in turn are defined in terms of distortion functions. By definition,
a distortion function g : [0, 1] → [0, 1] is a non-decreasing function such that g(0) = 0
and g(1) = 1. We do not assume a priori that g is convex, concave or differentiable (see
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Example 3.5 for a distortion function that is neither convex nor concave). Corresponding
to a distortion function g, the distortion risk measure of a random variable X is defined as

ρg(X) :=

ˆ ∞
0

g (SX(t)) dt−
ˆ 0

−∞
[1− g (SX(t))] dt, (2.3)

where SX(t) := P(X > t) is the survival function of X, and it is assumed that at least
one of the two integrals in Equation (2.3) is finite. If X is non-negative, then the second
integral vanishes, leaving

ρg(X) =

ˆ ∞
0

g (SX(t)) dt.

By Fubini’s theorem, Equation (2.3) can be rewritten as

ρg(X) =

ˆ 1

0

F−1X (1− p) dg(p) (2.4)

if g is left-continuous, and as

ρg(X) =

ˆ 1

0

F−1+X (1− p) dg(p) (2.5)

if g is right-continuous (see Theorems 4 and 6 of Dhaene et al. (2012)), with both integrals
understood in a Lebesgue-Stieltjes sense. The risk margin is prescribed mathematically
by a scalar multiple of the distortion risk measure of the discrepancy between the total
retained risk and its actuarial reserve:

Risk margin = δρg (Tf (X)− E[Tf (X)]) ,

where δ is a positive constant known as the cost-of-capital rate. The insurer’s risk-adjusted
liability, being the minimization objective of this paper, is then given by

Lf (X) := E[Tf (X)] + δρg (Tf (X)− E[Tf (X)]) .

This form of Lf (X) exhibits the risk margin as a buffer added to the actuarial reserve,
being the best estimate of the total retained loss, to cover adverse deviation of risk from
its expected value. The risk margin is also indispensable, taking into consideration the
fact that insurance liabilities are not actively traded in deep and liquid markets, and
therefore non-hedgeable. Allowance for prudence can be flexibly heightened by raising the
cost-of-capital rate δ or varying the distortion function gii. For more information about
risk-adjusted liability, we refer to The Chief Risk Officer Forum (2006) and Risk Margin
Working Group (2009).

Another perspective on Lf (X) is furnished by the translation invariance of distortion risk
measures, i.e. ρg(X + c) = ρg(X) + c for any real constant c (see Section 5 of Dhaene et al.
(2006)). This leads to

Lf (X) = (1− δ)E[Tf (X)] + δρg (Tf (X)) , (2.6)

iiIf g(x) ≥ x for all x ∈ [0, 1], then the risk margin must be non-negative.
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which can be viewed conveniently as a weighted average of the actuarial reserve on and
distortion risk measure of the total retained risk. Moreover, when δ = 1, Lf (X) reduces to
the objective function studied in Cui et al. (2013), Zheng and Cui (2014) and Zheng et al.
(2015).

To reduce its risk-adjusted liability, the insurer can purchase reinsurance treaties charac-
terized by ceded loss functions belonging to the set F of non-decreasing and 1-Lipschitz
functions, i.e.

F =

{
f : [0, ess sup(X))→ [0, ess sup(X))

∣∣∣∣∣ 0 ≤ f(x) ≤ x for all x ≥ 0,

0 ≤ f(x1)− f(x2) ≤ x1 − x2 if 0 ≤ x2 ≤ x1

}
.

With all ceded loss functions restricted to the set F , both the insurer and reinsurer will
incur higher payments for heavier ground-up losses, thereby having no incentive to over-
report claims. A technical by-product is that every f ∈ F is absolutely continuous with
f(0) = 0.

Premium-wise, we assume that the reinsurance premium is calibrated, for a given ceded
loss function f ∈ F , by

µr (f(X)) :=

ˆ ∞
0

r
(
Sf(X)(t)

)
dt, (2.7)

where r : [0, 1]→ R+ is a given non-decreasing function with r(0) = 0. To avoid trivialities,
we assume that r is not zero almost everywhere. It is important to note that the reinsurance
premium defined in Equation (2.7) not only possesses a concrete representation, but also
can be easily configured to satisfy a number of desirable properties by imposing appropriate
conditions on the function r, as noted in Proposition 2.3 of Cui et al. (2013). In addition,
with different specifications of r, various premium principles, including the well-known
expectation premium principle, Wang’s premium principle, generalized percentile premium
and the maximum possible claims principle, can be retrieved from (see Cui et al. (2013)
and Remark 2.2).

With every ingredient of the optimal reinsurance model at hand, we are now in a position
to formally state the optimization problems to be studied in this paper:

1. Free-premium problem:
inf
f∈F

Lf (X). (2.8)

2. Budget-constrained problem: {
inf
f∈F

Lf (X)

s.t. µr (f(X)) ≤ π,
(2.9)

where π is an exogenously given strictly positive quantity which can be interpreted
as the budget allocated to reinsurance.
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Note that Problems (2.8) and (2.9) are always well-posed with non-empty feasible sets
because the ceded loss function f ≡ 0 is admissible. Throughout this paper, we assume
that all integrals underlying Problems (2.8) and (2.9) exist and are finite.

2.2 First-step analysis

To solve Problems (2.8) and (2.9), we first recast their objective and constraint functions
into some equivalent integral forms in the following lemma, which extends Proposition 2.2 of
Cui et al. (2013) and will be crucial to further analysis. The proof, which is deferred to the
Appendix, is long and technical because of the general discontinuity of the functions g and

r, as opposed to Cui et al. (2013). For notational convenience, we write
´∞
0

for
´ ess sup(X)

0
,

keeping in mind that all ceded loss functions in this paper are defined on [0, ess sup(X)).

Lemma 2.1. (Integral representations of objective and constraint functions) For any f ∈
F , we have

E[f(X)] =

ˆ ∞
0

SX(t) df(t). (2.10)

Moreover, the objective function of Problems (2.8) and (2.9) and the reinsurance premium
can be expressed respectively as

Lf (X) = δρg(X) + (1− δ)E[X] +

ˆ ∞
0

GX(t) df(t), (2.11)

= δρg(X) + (1− δ)E[X] +

ˆ ∞
0

GX(t)f ′(t) dt, (2.12)

where
GX(t) = r (SX(t))− [δg (SX(t)) + (1− δ)SX(t)] , (2.13)

and

µr (f(X)) =

ˆ ∞
0

r (SX(t)) df(t) =

ˆ ∞
0

r (SX(t)) f ′(t) dt. (2.14)

Remark 2.2. The integral representations in Equations (2.10) and (2.14) can be used to
show that the maximum possible claims principle (see Kaluszka and Okolewski (2008))
can be captured by µr (f(X)) for an appropriate function r. Specifically, with r(x) =
(1− β)x+ β1{x>0}, where β is a fixed weight in (0, 1), we have

µr (f(X)) =

ˆ ∞
0

[(1− β)SX(t) + β1{SX(t)>0}] df(t)

= (1− β)

ˆ ∞
0

SX(t) df(t) + β

ˆ ∞
0

1{FX(t)<1}df(t).
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Applying (2.1) and Equation (2.10) yields

µr (f(X)) = (1− β)E[f(X)] + β

ˆ ∞
0

1{0≤t<F−1
X (1)}df(t)

= (1− β)E[f(X)] + βf
(
F−1X (1)

)
= (1− β)E[f(X)] + βF−1f(X)(1).

3 Characterizations of optimal solutions

Armed with the integral expressions of the objective and constraint functions in Section 2,
in this section we give complete solutions to Problems (2.8) and (2.9). We first treat the
free-premium problem, which offers important insights and forms the basis for tackling the
more challenging budget-constrained problem.

3.1 Free-premium problem

As δρg(X) + (1 − δ)E[X] is independent of the ceded loss function f , it follows from
Equation (2.11) of Lemma 2.1 that Problem (2.8) boils down to minimizing the integral´∞
0
GX(t)f ′(t) dt, where GX is given in Equation (2.13), among all f ∈ F . This can be

easily achieved in the following theorem.

Theorem 3.1. (Solution of Problem (2.8)) Every optimal solution of Problem (2.8) is of
the form

f ∗1(x) =

ˆ x

0

1{GX<0}(t) dt+

ˆ x

0

1{GX=0}(t) dh∗1(t), (3.1)

where h∗1 is an arbitrary function in F . In particular, the optimal solution is unique if
and only if {GX = 0} is a Lebesgue null set. The minimum risk-adjusted liability is

inf
f∈F

Lf (X) =

ˆ ∞
0

min {r (SX(t)) , δg (SX(t)) + (1− δ)SX(t)} dt.

Proof. By construction, f ∗1 ∈ F . Since all f ∈ F is non-decreasing and 1-Lipschitz, the
corresponding derivative f ′, which exists almost everywhere, satisfies 0 ≤ f ′ ≤ 1. For any
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f ∈ F , observe that

ˆ ∞
0

GX(t)f ′(t) dt =

ˆ
{GX<0}

GX(t)f ′(t) dt+

ˆ
{GX=0}

GX(t)f ′(t) dt

+

ˆ
{GX>0}

GX(t)f ′(t) dt

≥
ˆ
{GX<0}

GX(t)f ′(t) dt (3.2)

≥
ˆ
{GX<0}

GX(t) dt (3.3)

=

ˆ ∞
0

GX(t) df ∗1(t).

Hence inff∈F Lf (X) = Lf∗1(X).

To show that all optimal solutions of Problem (2.8) are given by the form in Equation
(3.1), we observe that Inequality (3.2) is sharp if and only if f ′ = 0 almost everywhere on
{GX > 0}. As f ′ ≤ 1, the second equality

ˆ
{GX<0}

GX(t)f ′(t) dt =

ˆ
{GX<0}

GX(t) dt

prevails if and only if f ′ = 1 almost everywhere on {GX < 0}. Overall, Lf (X) = Lf∗1(X)
if and only if

f ′(t) = 1{GX<0}(t) + h̃(t)1{GX=0}(t) for almost all t ∈ [0, ess sup(X)), (3.4)

where h̃ is any function that takes values between 0 and 1. Because f is absolutely con-
tinuous with f(0) = 0 and integrals of almost everywhere equal functions are the same,
Equation (3.4) is further equivalent to

f(x) =

ˆ x

0

f ′(t) dt =

ˆ x

0

[
1{GX<0}(t) + h̃(t)1{GX=0}(t)

]
dt,

or

f(x) =

ˆ x

0

1{GX<0}(t) dt+

ˆ x

0

1{GX=0}(t) dh(t),

in which h is an arbitrary function in F . This form of f corresponds precisely to the
construction of f ∗1 in Equation (3.1). A direct inspection of Equation (3.1) also shows
that f ∗1 simplifies to f ∗1(x) =

´ x
0

1{GX<0}(t) dt as the unique solution of Problem (2.8) if
and only if {GX = 0} is a Lebesgue null set.
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The minimum liability can be computed as

Lf∗1(X) = δρg(X) + (1− δ)E[X] +

ˆ
{GX<0}

GX(t) dt

= δ

ˆ ∞
0

g (SX(t)) dt+ (1− δ)
ˆ ∞
0

SX(t) dt

+

ˆ
{GX<0}

(
r (SX(t))− [δg (SX(t)) + (1− δ)SX(t)]

)
dt

=

ˆ
{GX<0}

r (SX(t)) dt+

ˆ
{GX≥0}

[δg (SX(t)) + (1− δ)SX(t)] dt

=

ˆ ∞
0

min {r (SX(t)) , δg (SX(t)) + (1− δ)SX(t)} dt.

Remark 3.2. The optimal solutions given in Theorem 3.1, despite their seemingly awkward
analytic expression, can be appreciated by simple cost-benefit considerations. To this end,
notice that each unit of excess loss the insurer cedes leads to a reduction in the risk-adjusted
liability captured by the risk function δg (SX(·))+(1−δ)SX(·) (benefit), but an increase in
the reinsurance premium quantified by the premium function r (SX(·)) (cost). Theorem 3.1
suggests that the insurer, with a view to minimizing his/her risk-adjusted liability, should
purchase full coverage on an excess layer of loss on which the benefit of reinsurance strictly
outweighs the cost of reinsurance. The latter condition translates mathematically into

δg (SX(·)) + (1− δ)SX(·) > r (SX(·)) ⇔ GX(·) < 0.

This explains the first integral in Equation (3.1). On the other hand, no reinsurance
coverage should be purchased when the cost of reinsurance strictly exceeds the cost of
reinsurance, or in mathematical terms, GX(·) > 0. On the excess layers of losses where
the benefit and cost of reinsurance are equal, i.e. GX(·) = 0, the insurer is indifferent
to what form of reinsurance coverage, if any, is purchased; the value of the risk-adjusted
liability is not altered in any way. This justifies why the optimal solutions may differ in
design on the set {GX = 0}, as the second integral in Equation (3.1) shows. These simple
cost-benefit observations will be crucial to solving the budget-constrained problem in the
next subsection.

3.2 Budget-constrained problem

In this subsection, we turn our attention to the budget-constrained Problem (2.9), the
solution of which allows the insurer to select the reinsurance strategy leading to the smallest
risk-adjusted liability while staying within the premium budget.

In the presence of a reinsurance premium budget, the interaction between the risk function
δg (SX(·))+(1−δ)SX(·) and premium function r (SX(·)) continues to play an instrumental
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role in the search of optimal reinsurance strategies. To begin with, we make the following
observations:

• If
´
{GX≤0}

r (SX(t)) dt ≤ π, then f ∗1 as defined in Theorem 3.1 satisfies the premium

constraint and solves Problem (2.9) readily.

• We are more interested in the intricate case where
´
{GX≤0}

r (SX(t)) dt > π, meaning
that ceding all the excess layers of loss when the benefit of reinsurance exceeds or
is equal to its cost violates the tight reinsurance premium constraint and therefore
refutes the feasibility of f ∗1. The critical question is how to cede the excess losses in
the set {GX ≤ 0} as “efficiently” as possible so as to make the most of the limited
reinsurance premium budget.

To formalize the notion of“efficiency”, we define the benefit-to-cost ratio iii HX : [0, ess sup(X))
→ R̄+ by

HX(t) :=
δg (SX(t)) + (1− δ)SX(t)

r (SX(t))
. (3.5)

It is clear that HX ≥ 1 if and only if GX ≤ 0. Observe that the numerator and denominator
of HX capture the benefit and cost of reinsurance respectively. By ceding the excess layers
of loss with a higher value of HX , the insurer can achieve a greater reduction in the risk-
adjusted liability at a smaller reinsurance premium. To minimize the total liability given
the limited budget, the above consideration suggests that the insurer should cede starting
from where HX is the greatest until all the reinsurance premium is exhausted. Theorem 3.3
below formally confirms that such a heuristic tactic based on the level sets of HX indeed
gives rise to the optimal solutions of Problem (2.9).

Theorem 3.3. (Solution of Problem (2.9)) Let

c∗ = inf

{
c > 1

∣∣∣∣ˆ
{HX≥c}

r (SX(t)) dt ≤ π

}
.

(a) If
´
{GX≤0}

r (SX(t)) dt ≤ π, then the set of optimal solutions of Problem (2.9) is the

same as that of Problem (2.8) given in Theorem 3.1.

(b) If
´
{GX<0} r (SX(t)) dt ≤ π <

´
{GX≤0}

r (SX(t)) dt, then the optimal solution of Prob-

lem (2.9) takes the form

f ∗2(x) =

ˆ x

0

1{GX<0}(t) dt+

ˆ x

0

1{GX=0}(t) dh∗2(t),

where h∗2 is any function in F such thatˆ
{GX<0}

r (SX(t)) dt+

ˆ
{GX=0}

r (SX(t)) dh∗2(t) ≤ π. (3.6)

iiiWhen t ≥ ess sup(X), r (SX(t)) = g (SX(t)) = SX(t) = 0, in which case HX(t) will be undefined.
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(c) If
´
{GX<0} r (SX(t)) dt > π and

´
{HX≥c∗}

r (SX(t)) dt = π, then the unique optimal

solution of Problem (2.9) is

f ∗3(x) =

ˆ x

0

1{HX≥c∗}(t) dt.

(d) If
´
{GX<0} r (SX(t)) dt > π and

´
{HX>c∗}

r (SX(t)) dt ≤ π <
´
{HX≥c∗}

r (SX(t)) dt,

then every optimal solution of Problem (2.9) is of the form

f ∗4(x) =

ˆ x

0

1{HX>c∗}(t) dt+

ˆ x

0

1{HX=c∗}(t) dh∗4(t),

where h∗4 is any function in F such that

ˆ
{HX>c∗}

r (SX(t)) dt+

ˆ
{HX=c∗}

r (SX(t)) dh∗4(t) = π. (3.7)

Proof. Since all of the four cases can be proved in a similar manner, we only prove Cases
(c) and (d), which are the most interesting.

(c) By definition, f ∗3 ∈ F with µr (f ∗3(X)) =
´
{HX≥c∗}

r (SX(t)) dt = π. Now fix any

f ∈ F satisfying the premium constraint. To verify the optimality of f ∗3, it suffices
to prove ˆ

{GX<0}
GX(t)[(f ∗3)′(t)− f ′(t)] dt ≤ 0, (3.8)

which is equivalent to

ˆ
{HX≥c∗}

GX(t)[1− f ′(t)] dt ≤
ˆ
{GX<0}\{HX≥c∗}

GX(t)f ′(t) dt

=

ˆ
{1<HX<c∗}

GX(t)f ′(t) dt.

Because {HX ≥ c∗} = {GX(·) ≤ (1− c∗)r (SX(·))},
ˆ
{HX≥c∗}

GX(t)[1− f ′(t)] dt ≤ (1− c∗)
ˆ
{HX≥c∗}

r (SX(t)) [1− f ′(t)] dt (3.9)

= (1− c∗)
(
π −
ˆ
{HX≥c∗}

r (SX(t)) f ′(t) dt

)
,

in which the last equality follows because
´
{HX≥c∗}

r (SX(t)) dt = π by hypothesis.
As ˆ

{HX>1}
r (SX(t)) f ′(t) dt ≤

ˆ ∞
0

r (SX(t)) f ′(t) dt ≤ π

14



and c∗ > 1 (if c∗ = 1, then

ˆ
{HX≥1}

r (SX(t)) dt =

ˆ
{GX≤0}

r (SX(t)) dt ≥
ˆ
{GX<0}

r (SX(t)) dt > π,

a contradiction to the hypothesis), we further have

ˆ
{HX≥c∗}

GX(t)[1− f ′(t)] dt ≤ (1− c∗)
(ˆ
{1<HX<c∗}

r (SX(t)) f ′(t) dt

)
(3.10)

≤
ˆ
{1<HX<c∗}

GX(t)f ′(t) dt, (3.11)

where the last inequality is due to {1 < HX < c∗} ⊂ {(1− c∗)r (SX(·)) < GX(·)}.
This proves Inequality (3.8) and confirms the optimality of f ∗3.

It remains to prove that f ∗3 is the only optimal ceded loss function of Problem (2.9).
Note that equality prevails in Inequality (3.8) if and only if Inequalities (3.9), (3.10)
and (3.11) all hold with equalities. It is easy to see that the latter is achieved by f ∗3

with (f ∗3)′ = 1{HX≥c∗} almost everywhere. Conversely, suppose that equalities hold
in Inequalities (3.9), (3.10) and (3.11). To show that f ≡ f ∗3, we observe that the
functions GX(·) and (1 − c∗)r(SX(·)) not only are ordered, but also have the same
integral on each of {HX ≥ c∗} and {1 < HX < c∗}. It follows that

[(1− c∗)r (SX(·))−GX(·)] [1− f ′] = 0 almost everywhere on {HX ≥ c∗}

and

[(1− c∗)r (SX(·))−GX(·)] f ′ = 0 almost everywhere on {1 < HX < c∗}.

These imply respectively that f ′(t) = 1 for almost all t in {HX > c∗} and f ′(t) = 0
for almost all t in {1 < HX < c∗}. Together with the equality in (3.10), we have

π =

ˆ
{HX>1}

r (SX(t)) f ′(t) dt

=

ˆ
{HX>c∗}

r (SX(t)) dt+

ˆ
{HX=c∗}

r (SX(t)) f ′(t) dt

≤
ˆ
{HX>c∗}

r (SX(t)) dt+

ˆ
{HX=c∗}

r (SX(t)) dt

=

ˆ
{HX≥c∗}

r (SX(t)) dt

= π,

so that f ′(t) = 1 for almost all t in {HX = c∗} by the same argument as well. Con-
sequently, f(x) =

´ x
0
f ′(t) dt =

´ x
0

1{HX≥c∗}(t) dt = f ∗3(x) for all x ∈ [0, ess sup(X)).
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(d) By construction, f ∗4 lies in F and satisfies

ˆ ∞
0

r (SX(t)) df ∗4(t) =

ˆ
{HX>c∗}

r (SX(t)) dt+

ˆ
{HX=c∗}

r (SX(t)) dh∗4(t) = π.

The optimality of f ∗4 and uniqueness of any optimal solution on {HX > c∗} can be
established as in the proof of Case (c) by splitting the integral in Inequality (3.8)
over the three sets {1 < HX < c∗}, {HX = c∗} and {HX > c∗}.

Several remarks concerning the different cases presented in Theorem 3.3 and the structures
of the various optimal solutions are in order.

Remark 3.4. (i) To solve Problem (2.8), the function GX(·), defined as the difference
between the premium function r (SX(·)) and the risk function δg (SX(·))+(1−δ)SX(·),
plays a vital role. In contrast, HX , being the quotient of the risk function and the
premium function, is instrumental in the solution of Problem (2.9). In essence, HX

considers not only whether the benefit of reinsurance is greater than the cost, but
also how much greater. Basing the construction of the optimal ceded loss function
on HX therefore allows the insurer to cede the excess losses most “efficiently” and, as
a consequence, obtain the lowest risk-adjusted liability with the limited reinsurance
budget.

(ii) Our results in Theorem 3.3 generalize those in Theorems 2.2 and 2.3 of Cui et al.
(2013). Our additional contributions are:

• We showcase the tradeoff of benefit and cost of reinsurance explicitly. Such a
cost-benefit consideration goes a long way towards a simple and transparent
investigation of the optimal solutions of Problem (2.9).

• The cost-benefit consideration is also critical to a complete search of optimal
ceded loss functions. In Theorem 3.3, we fully solve Problem (2.9) by suc-
cessfully identifying all possible optimal reinsurance strategies. In particular,
we provide a full characterization of the solution set and determine when the
optimal solution is unique.

(iii) It is necessary to distinguish Case (b) from Case (d), albeit their similarity. On the
set {GX = 0}, the ceded loss function does not contribute to any reduction in the risk-
adjusted liability. As long as the form of the ceded loss function on {GX = 0} allows
the insurer to stay within budget, optimality can be attained, hence the inequality
in (3.6). In contrast, on the set {HX = c∗} with c∗ > 1 in Case (d), the structure of
the ceded loss function does affect the risk-adjusted liability. The more excess loss
the insurer cedes, the greater the reduction in the risk-adjusted liability will be. This
explains the equality in Equation (3.7), signifying the exhaustion of the reinsurance
premium budget by the optimal ceded loss functions.
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(iv) Case (d) occurs only if there exists some interval [t1, t2] on which HX is constant
(see Example 3.6 in the next subsection). In this case, ceding all the excess losses
in the entire interval violates the reinsurance premium constraint. Theorem 3.3 (d)
shows that as a remedy, optimality can be achieved by setting f to be any arbitrary
non-decreasing, 1-Lipschitz function on [t1, t2] while maintaining its continuity and
consuming the full amount of reinsurance premium budget.

(v) The rather surprising conclusion that the form of the optimal solution on {HX = c∗}
in Case (d) does not matter, as long the resulting function resides in F and satisfies
the reinsurance premium constraint, can be appreciated by writing the objective
function on {HX = c∗} asˆ

{HX=c∗}
GX(t)f ′(t) dt = (1− c∗)

ˆ
{HX=c∗}

r (SX(t)) f ′(t) dt

and observing that the same integral
´
{HX=c∗} r (SX(t)) f ′(t) dt contributes to the

reinsurance premium on {HX = c∗} .

3.3 Examples

In the remainder of this section, we provide two carefully worked-out examples illuminating
Theorem 3.3 in some particular reinsurance models. In the course of doing so, we also
demonstrate the possibility of Cases (b) and (d) in Theorem 3.3 involving more than one
optimal reinsurance strategy. In each example, a complete solution would require one
to proceed carefully and consider a number of different cases in order to identify all the
optimal strategies, whose forms vary critically with the confidence level of the risk measure
and premium budget. Verbal interpretations based on the characteristics of the chosen risk
measures are provided to justify why the optimal solutions make intuitive sense.

For any real x and y, we write x ∧ y = min(x, y), x ∨ y = max(x, y) and x+ = x ∨ 0.

Example 3.5. (Value-at-Risk) The Value-at-Risk (VaR) of a random variable X with
distribution function FX at confidence level α ∈ [0, 1] is defined by

VaRα(X) = F−1X (α).

The distortion function that gives rise to VaR is g(x) = 1{x>1−α} (see Equation (44) of
Dhaene et al. (2006)), which is neither convex nor concave.

In this example, we solve Problem (2.9) under the expectation premium principle with
relative security loading θ, i.e. r(x) = (1 + θ)x with θ ≥ 0. The optimal solution of
Problem (2.8) can then be obtained from that of Problem (2.9) by disregarding the premium
constraint. Using (2.1), we have the following equivalences:

SX(t) > 1− α ⇔ FX(t) < α ⇔ t < F−1X (α).
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θ+δ
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Figure 1: The graph of HX in the case of VaR and expectation premium principle.

In this case,

HX(t) =

{
δ

(1+θ)SX(t)
+ 1−δ

1+θ
, if t < F−1X (α),

1−δ
1+θ

, if t ≥ F−1X (α),

which is illustrated in Figure 1.

Using (2.1) again, we note that

δ

(1 + θ)SX(t)
+

1− δ
1 + θ

≥ 1 ⇔ t ≥ F−1X

(
θ

θ + δ

)
,

so

HX(t) ≥ 1 ⇔ F−1X

(
θ

θ + δ

)
≤ t < F−1X (α).

Case 1. If α < θ/(θ + δ), then HX(t) < 1 for all t ∈ [0, ess sup(X)). In this case, no
reinsurance should be optimally purchased in Problems (2.8) and (2.9), i.e. the
only optimal solution is f ∗ ≡ 0. A possible interpretation is that when the level
of confidence is small, the insurer, who is not concerned with extreme losses,
decides that the current level of risk exposure is appropriate and that it is not
worthwhile at all to purchase any form of reinsurance.

Case 2. Suppose that α ≥ θ/(θ + δ).

Case i. If
´ F−1

X (α)

F−1
X (θ/(θ+δ))

SX(t) dt ≤ π/(1 + θ), then according to Theorem 3.3

(a), the optimal solution of Problem (2.9) is of the form

f ∗1(x) =

[
x ∧ F−1X (α)− F−1+X

(
θ

θ + δ

)]
+

+h∗1
[
x ∧ F−1+X

(
θ

θ + δ

)]
,
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where h∗1 is an arbitrary non-negative, non-decreasing 1-Lipschitz
function with h∗1

[
F−1X (θ/(θ + δ))

]
= 0. Note that f ∗1 also solves

Problem (2.8).

Case ii. If
´ F−1

X (α)

F−1+
X (θ/(θ+δ))

SX(t) dt ≤ π/(1 + θ) <
´ F−1

X (α)

F−1
X (θ/(θ+δ))

SX(t) dt, then in

accordance with Theorem 3.3 (b), the optimal solution of Problem
(2.9) is

f ∗2(x) =

[
x ∧ F−1X (α)− F−1+X

(
θ

θ + δ

)]
+

+h∗2
[
x ∧ F−1+X

(
θ

θ + δ

)]
,

where h∗2 is an arbitrary non-negative, non-decreasing 1-Lipschitz
function with h∗2

[
F−1X (θ/(θ + δ))

]
= 0 and

ˆ F−1
X (α)

F−1+
X (θ/(θ+δ))

SX(t) dt+

ˆ F−1+
X (θ/(θ+δ))

F−1
X (θ/(θ+δ))

SX(t) dh∗2(t) ≤ π

1 + θ
.

Case iii. If
´ F−1

X (α)

F−1+
X (θ/(θ+δ))

SX(t) dt > π/(1 + θ), then we determine the optimal

cutoff level c∗ > 1 as the smallest c > 1 such thatˆ
{HX≥c}

SX(t) dt ≤ π

1 + θ
.

• If
´
{HX≥c∗}

SX(t) dt = π/(1 + θ), then from Theorem 3.3 (c), the
unique optimal solution is

f ∗3(x) =
[
x ∧ F−1X (α)−H−1X (c∗)

]
+
,

where H−1X (c∗) is well-defined because HX is non-decreasing on
[0, F−1X (α)).

• If
´
{HX>c∗}

SX(t) dt ≤ π/(1 + θ) <
´
{HX≥c∗}

SX(t) dt, then it

follows from Theorem 3.3 (d) that the optimal solution is

f ∗4(x) =
[
x ∧ F−1X (α)−H−1+X (c∗)

]
+

+ h∗4
[
x ∧H−1+X (c∗)

]
,

where h∗4 is an arbitrary non-negative, non-decreasing 1-Lipschitz
function such that h∗4

[
H−1X (c∗)

]
= 0 and

ˆ F−1
X (α)

H−1+
X (c∗)

SX(t) dt+

ˆ H−1+
X (c∗)

H−1
X (c∗)

SX(t) dh∗4(t) =
π

1 + θ
.

Observe that when {GX = 0} and {HX = c∗} are both Lebesgue null sets, the optimal
solution of Problem (2.9) reduces to a limited stop-loss reinsurance contract. Such a ceded
loss function is consistent with the character of VaR, adopting which the insurer only cares
about losses up to the α-th quantile F−1X (α) and is not interested in the severity of further
extreme losses. �
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Figure 2: The graph of HX in the case of TVaR and expectation premium principle.

Example 3.6. (Tail Value-at-Risk) The Tail Value-at-Risk (TVaR) of an integrable ran-
dom variable X at confidence level α ∈ [0, 1) is defined by

TVaRα(X) =
1

1− α

ˆ 1

α

VaRp(X) dp.

The distortion function corresponding to TVaR is g(x) = x
1−α ∧ 1 (see Equation (45) of

Dhaene et al. (2006)).

We now solve Problem (2.9) under the expectation premium principle with relative security
loading θ. In this setting, we have

HX(t) =

{
δ

(1+θ)SX(t)
+ 1−δ

1+θ
, if t < F−1X (α),

δ
(1+θ)(1−α) + 1−δ

1+θ
, if t ≥ F−1X (α),

which is non-decreasing in t (see Figure 2).

Case 1. If δ
(1+θ)(1−α) + 1−δ

1+θ
< 1, or α < θ/(θ + δ), then HX(t) < 1 for all t ≥ 0. As in

Example 3.5, no reinsurance should be optimally purchased when the level of
confidence is sufficiently small.

Case 2. Assume that α ≥ θ/(θ + δ). Then HX(t) ≥ 1 if and only if t ≥ F−1X (θ/(θ + δ)).

Case i. If
´∞
F−1
X (θ/(θ+δ))

SX(t) dt ≤ π/(1 + θ), then by Theorem 3.3 (a), the

optimal solution of Problem (2.9) (as well as Problem (2.8)) is

f ∗1(x) =

[
x− F−1+X

(
θ

θ + δ

)]
+

+ h∗1
[
x ∧ F−1+X

(
θ

θ + δ

)]
, (3.12)

where h∗1 is an arbitrary non-negative, non-decreasing 1-Lipschitz
function with h∗1

[
F−1X (θ/(θ + δ))

]
= 0.

20



Case ii. If
´∞
F−1+
X (θ/(θ+δ))

SX(t) dt ≤ π/(1 + θ) <
´∞
F−1
X (θ/(θ+δ))

SX(t) dt, then by

virtue of Theorem 3.3 (b), the optimal solution of Problem (2.9) is

f ∗2(x) =

[
x− F−1+X

(
θ

θ + δ

)]
+

+ h∗2
[
x ∧ F−1+X

(
θ

θ + δ

)]
,

where h∗2 is an arbitrary non-negative, non-decreasing 1-Lipschitz
function with h∗2

[
F−1X (θ/(θ + δ))

]
= 0 and

ˆ ∞
F−1+
X (θ/(θ+δ))

SX(t) dt+

ˆ F−1+
X (θ/(θ+δ))

F−1
X (θ/(θ+δ))

SX(t) dh∗2(t) ≤ π

1 + θ
.

Case iii. If
´∞
F−1+
X (θ/(θ+δ))

SX(t) dt > π/(1 + θ), then we determine the optimal

cutoff level c∗ > 1 as the smallest c > 1 such thatˆ
{HX≥c}

SX(t) dt ≤ π

1 + θ
.

• If
´
{HX≥c∗}

SX(t) dt = π/(1 + θ), then by Theorem 3.3 (c), the
unique optimal solution is

f ∗3(x) =
[
x−H−1X (c∗)

]
+
,

whereH−1X (c∗) is well-defined again becauseHX is a non-decreasing
function.

• If
´
{HX>c∗}

SX(t) dt ≤ π/(1 + θ) <
´
{HX≥c∗}

SX(t) dt, then by

Theorem 3.3 (d), the optimal solution is

f ∗4(x) =
[
x−H−1+X (c∗)

]
+

+ h∗4
[
x ∧H−1+X (c∗)

]
,

where h∗4 is an arbitrary non-negative, non-decreasing 1-Lipschitz
function such that h∗4

[
H−1X (c∗)

]
= 0 and

ˆ ∞
H−1+

X (c∗)

SX(t) dt+

ˆ H−1+
X (c∗)

H−1
X (c∗)

SX(t) dh∗4(t) =
π

1 + θ
.

If {GX = 0} and {HX = c∗} are both Lebesgue null sets, then the optimal solution
is solely in the form of stop-loss reinsurance. This is consistent with the character of
TVaR. When the insurer is TVaR-regulated, he/she cares about not only the probability
of incurring a high loss, but also the severity of extreme losses. As a result, the insurer will
find it advantageous in terms of minimizing his/her risk-adjusted liability to purchase full
coverage on all extreme losses by means of a stop-loss reinsurance treaty.

As a concrete illustration of the wide range of optimal reinsurance treaties in the last case
of the above solution, we suppose specifically that the ground-up loss X is exponentially
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distributed with mean 1,000, α = 0.95, θ = 0.1, δ = 0.6 and π = 44. Now δ
(1−α)(1+θ) + 1−δ

1+θ
=

124/11 > 1, F−1X (α) = 1, 000 ln 20 and

ˆ ∞
F−1
X (α)

SX(t) dt =

ˆ ∞
1,000 ln 20

e−t/1,000 dt = 50 >
π

1 + θ
= 40,

which implies that c∗ = 124/11 in this case of a tight reinsurance budget. Because
H−1X (c∗) = 1, 000 ln 20 and H−1+X (c∗) = ∞, the optimal solution can be any function
f ∗ ∈ F such that f ∗

(
F−1X (α)

)
= f ∗(1, 000 ln 20) = 0 and

ˆ ∞
1,000 ln 20

SX(t) df ∗(t) = 40. (3.13)

It is straightforward to check that the following functions are all members of F , null on
[0, F−1X (α)] = [0, 1, 000 ln 20], satisfy Equation (3.13) and, most importantly, result in the
same level of risk-adjusted liability:

(Stop-loss) f1(x) = (x− 1, 000 ln 25)+,

(Limited stop-loss) f2(x) = (x ∧ 1, 000 ln 100− 1, 000 ln 20)+,

(Quota-share) f3(x) =
4

5
(x− 1, 000 ln 20)+,

(Mixtures of insurance layers) f4(x) = (x ∧ 1, 000 ln 40− 1, 000 ln 20)+

+
3

4
(x− 1, 000 ln 50)+,

(Irregular) f5(x) = c

ˆ x∨1,000 ln 20

1,000 ln 20

Φ(t) dt,

where Φ is the distribution function of the standard normal distribution, and

c =
40´∞

1,000 ln 20
e−x/1,000Φ(x) dx

=
40

50Φ(1, 000 ln 20) + 1, 000e−1/(2×1,0002)[1− Φ(1, 000 ln 20 + 1/1, 000)]
.

In addition, any non-decreasing convex function f6 satisfying 0 ≤ f6(x) ≤ x for all x ≥ 0 is
1-Lipschitz (see Section 5 of Cheung et al. (2014)), and will solve Problem (2.9) provided
that f6 is null on [0, F−1X (α)] = [0, 1, 000 ln 20] and satisfies Equation (3.13). �

Remark 3.7. (i) For the purpose of illustration, we have chosen the expectation premium
principle in Examples 3.5 and 3.6 because it is widely used and extensively studied in
a number of articles. In the special case when δ = 1, our results in Examples 3.5 and
3.6 are consistent with those in Corollary 3.1 and Example 3.1 of Cui et al. (2013).
However, with Theorem 3.3 we manage to exhaust all possible optimal solutions and
assert uniqueness in some cases.
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(ii) It is also intriguing to explore the effect of δ and θ on the optimal ceded loss functions
in Examples 3.5 and 3.6. With the exception of Case 1 (i.e. when the confidence level
is too low), it can be seen that the insurer in both examples cedes more excess loss
as δ increases or θ decreases, implying a more stringent risk margin or reinsurance
becoming less expensive respectively. This is in agreement with observed practice.

(iii) If we replace the expectation premium principle by Wang’s premium principle, i.e. r
is a non-decreasing concave function, we have

HVaR
X (t) =

{
δ+(1−δ)SX(t)
r(SX(t))

, if t < F−1X (α),
(1−δ)SX(t)
r(SX(t))

, if t ≥ F−1X (α),

and

HTVaR
X (t) =

{
δ+(1−δ)SX(t)
r(SX(t))

, if t < F−1X (α),
[δ+(1−δ)(1−α)]SX(t)

(1−α)r(SX(t))
, if t ≥ F−1X (α).

respectively in the VaR and TVaR cases. Note that HVaR
X and HTVaR

X can take an
irregular shape without further information about the function r. If δ = 1, then HVaR

X

and HTVaR
X are both non-decreasing on [0, F−1X (α)), so that in Case (c) of Theorem

3.3, we have
f ∗VaR(x) =

[
x ∧ F−1X (α)−H−1X (c∗)

]
+
,

for some c∗ > 1 such that
´ F−1

X (α)

H−1
X (c∗)

r (SX(t)) dt = π, and

f ∗TVaR(x) = (x ∧ d2 − d∗1)+ ,

for some d∗1 and d∗2 such that d∗1 < d∗2 and
´ d∗2
d∗1
r (SX(t)) dt = π, as the respective

solutions of the VaR-based and TVaR-based Problem (2.9). These results are again
consistent with Corollary 3.1 and Example 3.1 of Cui et al. (2013).

4 A dual optimal reinsurance problem

As an application of the cost-benefit technique illustrated in Section 3, in this section we
solve a related optimal reinsurance problem formulated as:{

inf
f∈F

µr (f(X))

s.t. Lf (X) ≤ R,
(4.1)

where R is a fixed quantity that can be regarded as the tolerance level of the risk-adjusted
liability imposed by the shareholders or regulators of the insurer. The problem is to select
the cheapest reinsurance strategy while maintaining the risk-adjusted liability at a level
that is acceptable to the shareholders and regulators.

Inspecting Problem (4.1), one can make the following observations:
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1. The objective function (resp. constraint function) of Problem (4.1) becomes the
constraint function (resp. objective function) of Problem (2.9).

2. The unconstrained version of Problem (4.1) is not meaningful, because the insurer
can always purchase no reinsurance so as not to pay any reinsurance premium.

3. By Lemma 2.1, the constraint function can be written equivalently as

ˆ ∞
0

GX(t) df(t) ≤ R′ := R− [δρg(X) + (1− δ)E[X]] .

4. Unlike Problem (2.9), in which the insurer is eager to purchase reinsurance to reduce
its liability, in Problem (4.1) the insurer is disinclined to do so because that will
result in a rise in the reinsurance premium, which he/she wishes to minimize. He/she
employs reinsurance only to the extent to satisfy the liability constraint.

5. While Problem (2.9) always has a solution, Problem (4.1) may not be well-posed if
the value of R (or R′) is too low. Specifically, if

ˆ
{GX<0}

GX(t) dt =

ˆ
{GX≤0}

GX(t) dt > R′,

then the feasible set of Problem (4.1) is empty, in which case Problem (4.1) admits no
solution. On the other hand, when R′ ≥ 0, then f ≡ 0 solves Problem (4.1) trivially.

To seek the optimal reinsurance strategies for Problem (4.1), the insurer is interested in
minimizing the cost-to-benefit ratio

r (SX(t))

δg (SX(t)) + (1− δ)SX(t)
,

which is equivalent to maximizing the benefit-to-cost ratio HX defined in Equation (3.5).
In other words, the same technique used to tackle Problem (2.9) can be applied to solve
Problem (4.1).

Theorem 4.1. (Solution of Problem (4.1)) Assume that
´
{GX<0}GX(t) dt ≤ R′ < 0.

Define

d∗ = sup

{
d ≥ 1

∣∣∣∣ˆ
{HX>d}

GX(t) dt ≤ R′
}
.

(a) If
´
{HX>d∗}

GX(t) dt = R′, then the unique optimal solution of Problem (4.1) is given
by

f ∗5(x) =

ˆ x

0

1{HX>d∗}(t) dt.
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(b) If
´
{HX≥d∗}

GX(t) dt ≤ R′ <
´
{HX>d∗}

GX(t) dt, then the optimal solution of Problem

(4.1) is given by

f ∗6(x) =

ˆ x

0

1{HX>d∗}(t) dt+

ˆ x

0

1{HX=d∗}(t) dh∗6(t),

where h∗6 is any function in F such that

ˆ
{HX>d∗}

GX(t) dt+

ˆ
{HX=d∗}

GX(t) dh∗6(t) = R′.

Proof. The proof mirrors that of Theorem 3.3 and is omitted to avoid repetition.

5 Concluding remarks

In this article, we examine the entire set of ceded loss functions that minimize an insurer’s
risk-adjusted liability in which the risk margin is quantified by distortion risk measures,
possibly under the imposition of a reinsurance premium budget. A transparent argument
which lends itself to cost-benefit interpretations and to the exhaustion of all optimal so-
lutions is illustrated. Unlike previous studies, it is shown that the optimal reinsurance
treaties can take an arbitrary shape on a certain set in some cases. As a further illustra-
tion of the cost-benefit argument, we also completely determine every ceded loss function
that minimizes the reinsurance premium while keeping the insurer’s risk-adjusted liability
below a fixed tolerance level.

Throughout this article, the constraint function is formulated in terms of r, the function
that is used to calibrate the reinsurance premium. It is essential to emphasize that our
analysis can indeed be extended to more interesting and realistic scenarios with more
complicated constraint functions accommodating the interests of both the insurer and
reinsurer. Consider, for instance, the constrained minimization problem{

inf
f∈F

Lf (X)

s.t. VaRp [f(X)− µr (f(X))] ≤ π,
(5.1)

where f(X) − µr (f(X)) represents the total risk of the reinsurer, p is a given confidence
level in (0, 1), and π is the risk tolerance level of the reinsurer. The constraint function of
Problem (5.1) takes the reinsurer’s risk preference into account and makes practical sense
in that reinsurance is a two-party problem. By virtue of the translation invariance of VaR,
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we can write the constraint function of Problem (5.1) as

VaRp [f(X)− µr (f(X))] = VaRp [f(X)]− µr (f(X))

=

ˆ ∞
0

[
1{SX(t)>1−p} − r (SX(t))

]
df(t)

=

ˆ ∞
0

r̂ (SX(t)) df(t),

where r̂(x) := 1{x>1−p}−r(x). This way of writing expresses both of the objective function
and constraint function as appropriate integrals with respect to the ceded loss function.
Building upon the idea underlying the proof of Theorem 3.3, one can easily obtain the set
of optimal ceded loss functions of Problem (5.1).
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A Appendix

Proof of Lemma 2.1. We first prove Equation (2.10) by writing

f(X) =

ˆ X

0

df(t) =

ˆ ∞
0

1{X>t} df(t),

which is a well-defined Lebesgue-Stieltjes integral in which the induced measure is abso-
lutely continuous with respect to the Lebesgue measure, as f is a non-decreasing absolutely
continuous function with f(0) = 0. By Fubini’s theorem,

E[f(X)] =

ˆ ∞
0

E[1{X>t}] df(t) =

ˆ ∞
0

SX(t) df(t).

Next, as a key step towards Equation (2.11), we prove

ρg (f(X)) =

ˆ ∞
0

g (SX(t)) df(t) (A.1)

by showing

F−1f(X)(1− p) =

ˆ ∞
0

F−11{X>t}
(1− p) df(t), 0 ≤ p ≤ 1 (A.2)
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and

F−1+f(X)(1− p) =

ˆ ∞
0

F−1+1{X>t}
(1− p) df(t), 0 ≤ p ≤ 1. (A.3)

The left-hand side of Equation (A.2), by virtue of Equation (2.2), equals f
(
F−1X (1− p)

)
.

To calculate the right-hand side of Equation (A.2), note that for each t ∈ [0, ess sup(X)),

F−11{X>t}
(1− p) =

{
0, if 0 < 1− p ≤ FX(t)

1, if FX(t) < 1− p ≤ 1

=

{
0, if t ≥ F−1X (1− p)
1, if t < F−1X (1− p)

due to (2.1). Hence

ˆ ∞
0

F−11{X>t}
(1− p) df(t) =

ˆ F−1
X (1−p)

0

df(t) = f
(
F−1X (1− p)

)
,

verifying Equation (A.2). Equation (A.3) can be shown in a completely analogous manner.

We can now establish (A.1) by distinguishing the continuity of g.

Case 1. If g is left-continuous, then it follows from Equations (2.4), (A.2) and Fubini’s
theorem that

ρg (f(X)) =

ˆ 1

0

F−1f(X)(1− p) dg(p)

=

ˆ 1

0

(ˆ ∞
0

F−11{X>t}
(1− p) df(t)

)
dg(p)

=

ˆ ∞
0

(ˆ 1

0

F−11{X>t}
(1− p) dg(p)

)
df(t)

=

ˆ ∞
0

(ˆ
[0,SX(t))

dg(p)

)
df(t)

=

ˆ ∞
0

g (SX(t)) df(t),

in which the last step uses the left-continuity of g.
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Case 2. For right-continuous g, we use Equations (2.5) and (A.3) to obtain

ρg (f(X)) =

ˆ 1

0

F−1+f(X)(1− p) dg(p)

=

ˆ 1

0

(ˆ ∞
0

F−1+1{X>t}
(1− p) df(t)

)
dg(p)

=

ˆ ∞
0

(ˆ 1

0

F−1+1{X>t}
(1− p) dg(p)

)
df(t)

=

ˆ ∞
0

(ˆ
[0,SX(t)]

dg(p)

)
df(t)

=

ˆ ∞
0

g (SX(t)) df(t),

where the last step requires the right-continuity of g.

Case 3. For general g, we write, as in Theorem 7 of Dhaene et al. (2012), g = crgr + clgl
for some right-continuous distortion function gr and left-continuous distortion
function gl, and some non-negative constants cr and cl such that cr + cl = 1.
Using the results in Cases 1 and 2,

ρg (f(X)) = crρgr (f(X)) + clρgl (f(X))

= cr

ˆ ∞
0

gr (SX(t)) df(t) + cl

ˆ ∞
0

gl (SX(t)) df(t)

=

ˆ ∞
0

g (SX(t)) df(t).

Repeating the above derivations with g replaced by r, noting that the condition g(1) = 1
is not used, leads to

µr (f(X)) =

ˆ ∞
0

r (SX(t)) df(t),

which is the first equality in Equation (2.14).

We now turn to Equation (2.11). Because distortion risk measures are translation invariant,
we have

ρg(Tf (X)) = µr (f(X)) + ρg (X − f(X))

= µr (f(X)) +

ˆ ∞
0

g (SX(t)) d(Id− f)(t)

=

ˆ ∞
0

r (SX(t)) df(t) +

ˆ ∞
0

g (SX(t)) dt−
ˆ ∞
0

g (SX(t)) df(t)

= ρg(X) +

ˆ ∞
0

[r (SX(t))− g (SX(t))] df(t)
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where the second equality follows from an application of Equation (A.1) with a replacement
of f by Id− f , which also lies in F . Together with Equations (2.6) and (2.10), we obtain

Lf (X) = (1− δ)E[Tf (X)] + δρg (Tf (X))

= (1− δ) [E[X]− E[f(X)] + µr (f(X))] + δρg (Tf (X))

= (1− δ)
(
E[X] +

ˆ ∞
0

[r (SX(t))− SX(t)] df(t)

)
+ δ

[
ρg(X) +

ˆ ∞
0

[r (SX(t))− g (SX(t))] df(t)

]
= δρg(X) + (1− δ)E[X] +

ˆ ∞
0

GX(t) df(t),

where GX(t) = r (SX(t))− [δg (SX(t)) + (1− δ)SX(t)].

Finally, the two Lebesgue-Stieltjes integrals in Equations (2.11) and (2.14) can be trans-
formed into ordinary Lebesgue integrals with df(t) replaced by f ′(t) dt because of the
absolute continuity of f , whose derivative exists almost everywhere (see Remark (v)(a) on
page 285 of Stein and Shakarchi (2005)).

Remark A.1. Equation (A.1), when written as

ρg

(ˆ ∞
0

1{X>t} df(t)

)
=

ˆ ∞
0

ρg(1{X>t}) df(t),

can be considered as an integral version of the comonotonic additivity property of distortion
risk measures (see Equation (52) of Dhaene et al. (2006)), noting that (1{X>t})t∈[0,∞) is a
collection of comonotonic random variables (see Dhaene et al. (2002) for the definition of
comonotonicity).
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