# Aggregate attention<sup>\*</sup>

Paul J. Irvine Neeley School of Business Texas Christian University

June, 2021

#### Abstract

We study some of the aggregate properties of investor attention to the stock market. We introduce a framework that constructs a null hypothesis of what rational aggregate attention should look like. This framework states that aggregate attention should be proportional to the aggregate wealth invested in each stock. We find that the distribution of attention at first appears rational. However, much of this attention is directed away from the high market cap names that should attract the most attention. Attention is notably more volatile from month to month than market cap, making attention unpredictable from a market maker perspective. This pattern generates pricing errors that result in the most popular stocks performing poorly in the upcoming month. This poor performance appears to be a short-term reversal of pricing errors generated by the unpredictable liquidity demands volatile attention can generate.

<sup>\*</sup>All errors are our own. Preliminary and incomplete. Thanks to David Rakowski, Joey Engelberg, Siyi Shen, and seminar participants at the University of South Carolina. Corresponding author: p.irvine@tcu.edu.

# Aggregate Attention

#### Abstract

We study some of the aggregate properties of investor attention to the stock market. We introduce a framework that constructs a null hypothesis of what rational aggregate attention should look like. This framework states that aggregate attention should be proportional to the aggregate wealth invested in each stock. We find that the distribution of attention at first appears rational. However, much of this attention is directed away from the high market cap names that should attract the most attention. Attention is notably more volatile from month to month than market cap, making attention unpredictable from a market maker perspective. This pattern generates pricing errors that result in the most popular stocks performing poorly in the upcoming month. This poor performance appears to be a short-term reversal of pricing errors generated by the unpredictable liquidity demands volatile attention can generate.

## 1 Introduction

Attention is a scarce resource. How do investors allocate their attention across stocks? Do they allocate attention rationally? What constitutes a measure of rational attention? This paper intends to provide evidence on these questions. We use a large data set of investor posts from the website Stocktwits, to evaluate the distribution of attention across stocks. In addition, we evaluate how attention responds to stock returns, news articles, and other factors proposed in the literature to proxy for attention. The goal of this paper is to provide a broad set of facts on aggregate investor attention, that can hopefully guide the burgeoning literature on attention and its effects in financial economics.

What should be the rational level of investor attention? It is almost tautological nowadays to assume that an individuals level of attention is limited, sometimes this bound is imposed by cognitive capability, in other settings by the restrictions of the effort required, or the limited time involved, sometimes by all of these factors. An early attempt to incorporate these limitations directly into the stock market is Merton (1987) who notes, quite correctly, that investors seem limited in the set of stocks they 'know about', and thus pay attention to. Casual observation leads to the obvious conclusion that different individual investors pay attention to different sets of stocks. So how should these distinct attention sets aggregate in the stock market? We propose a simple framework that assumes investors should aggregate attention in proportion to their wealth invested in different stocks. Fortunately, we know how wealth aggregates across stocks since we can easily calculate market capitalization weights. Therefore, we propose a null hypothesis that attention across investors should aggregate in proportion to a stock's market cap weight.

We examine the aggregate properties of investor attention using data from the Stocktwits web site. Stocktwits is a site where investor can post short notes on individual stocks. These notes are aggregated into a thread that is continually updated as new investors post their notes or reactions to the market action, news reports, dividend news, or other posts. Stocktwits has grown considerably since its introduction in 2008, and currently has the advantage of covering a large and broad set of investors and stocks. In using this data, we do assume that posting about a stock implies the investor is paying attention to the stock. This does not seem like an extreme assumption since to post an investor must identify the stock by ticker symbol, so clearly the attention is specific to that stock, and this attention is recorded when they take enough interest in the stock to write a post about it. In doing so, they are very likely follow the thread containing other posts on the same stock, thus applying their limited supply of attention to the posted stock.

Existing papers using network data concentrate on the effects of abnormal attention on sentiment or stock returns. For example, Da, Engelberg and Gao (2011) use Google search intensity as a proxy for attention and show that interest in the ticker is related to IPO initial returns. Ben-Rephael, Da, and Israelsen (2017) use the Bloomberg news network to examine the effects of abnormal institutional attention on the speed of return responses to news events. Because of restrictions on the way Google search intensity and Bloomberg news are disseminated, they are problematical for measuring aggregate attention. Social networks are studied by Giannini, Irvine and Shu (2018) who relate social media sentiment to overpricing by physically distant investors. Rakowski, Shirley and Stark (2020) use Twitter outages to infer the effects of social media activity on volume and returns. As in Giannini et al. (2019), Rakowski et al. (2020) find that social media activity can be particularly revealing around earnings announcements. A number of more obscure attention and return studies have been performed in international settings, usually with Twitter since it has the most accessible API. These international studies produce mixed results; usually they report a relation between attention and returns, but it is not always a relation that is consistent with other findings (Yoshinaga and Rocco, 2020). Stocktwits data has proven to be particularly useful in Cookson and Neissner's (2020) study of disagreement and investor type, in Giannini et al.'s (2019) study of investor disagreement around earnings announcements, as a data source to define political leanings in Cookson, Engelberg, and Mullins (2020), and in Cai, Yung, and Zhu's (2019) study of sentiment and post-earnings announcement drift.

In his treatise on attention and effort, Kahneman (1973) discusses why individuals appear to selectivity attend some stimuli, in preference of others This selective attention is set in a framework where attention requires effort, a resource that is limited, and therefore must be distributed selectively. Most of the literature on attention in psychology has focused on what stimuli attract individual attention. In economics, a natural focus point is how limited attention affects consumer choice (De Clippel, Eliaz, and Rozen, 2014). However, Kahneman's (1973) ideas of a capacity on attention are used in accounting and finance papers like Hirshleifer and Teoh (2003), Peng and Xiong (2006), DellaVigna and Pollet (2009), and Hirshleifer, Kim and Teoh (2009). In this paper, we focus on aggregate attention, or how the collective selective attention by individuals aggregates to a whole. In particular, we focus on attention to stocks, and how the attention of investors aggregates across stocks.

Our first empirical tests examine the concentration of investor attention and compares the level of concentration in attention to the concentration of market value and volume. We represent concentration as a power law, where the exponent of the power law can be estimated empirically, and yields a compact way to describe concentration across a large set of stocks. Using a sample of 100 stocks, the initial indication is that attention is rational in that investors allocate their attention in the same way that market capitalization is allocated across stocks. However, when we expand the set of stock examined to 200, 500, or 1,000 stocks, we find that investor attention tends to be more and more concentrated than market capitalization. In fact, attention and trading volume tend to reflect a similar pattern, in that volume is more concentrated than market cap as well. This change in attention concentration as we expand the sample indicates that investor attention is rational relative to market cap, at least for the top 100 stocks, but investors are relatively inattentive as we go down the market cap scale. This finding provides behavioral support for the 'neglected firm' effect, first proposed by Arbel and Strebel (1982).

Some of the characteristics of aggregate attention can be important for models such as Hendershott, Menkveld, Praz and Seasholes (2021) who extend the slow moving capital ideas of Bogousslavsky (2016) and Duffie (2010) to explain mispricing and mean reversion in prices at different time scales. Their model relies on two groups of inattentive investors whose lack of attention drives episodic liquidity demands that can distort prices. Their model has little behavioral support, it is a proposal that appears to fit several market regularities. We provide behavioral support to this theory in several ways, including the finding that aggregate attention is quite volatile on a month to month basis. About 60 percent of the stocks that attract the most attention in a particular month are also attracting the most attention in the following month. This percentage implies that attention-driven liquidity demands can rotate significantly and could be the driving force for liquidity shocks that impact efficient pricing. At this point it should be noted that the Top volume stocks are more stable month to month than the top attention stocks, and volume is the key driver of the market maker problem in Hendershott et al. (2021). However, since attention in Hendershott (2021) is empirically represented by retail order flow, our evidence indicates that order flow is an imperfect proxy for attention, since only between 35 and 53 percent of firms are in the same high volume-high attention groups across two adjacent months.<sup>1</sup> Although attention tracks volume more closely than attention tracks market cap, there are still significant differences, and attention is not always perfectly reflected in trading volume.

Other models of attention, though limited in focus, have proven particularly powerful in finance applications. Kacperczyk, Van Niewerburgh and Veldkamp (2016) present a model where fund managers optimally focus attention on either systematic or aggregate factors depending on the business cycle, with systematic factors attracting more attention in recessions, and idiosyncratic factors attracting more attention in booms. They claim that such a pattern of attention allocation over the business cycles produces the same pattern of time varying skill as observed in the data. Chinco (2020) attempts to infer the ex-ante likelihood of bubbles, using a model where returns above a certain threshold stimulate speculative attention to particular stocks. Attention and returns are tied together in Chinco (2020) through

 $<sup>^{1}</sup>$ We examine the top attention and volume groups using sets of between 50 and 1,000 stocks. As this threshold rises, there are more stocks in common between attention and volume.

social interactions that become more persuasive when past returns reach a threshold level. The implicit tie into attention in Chinco (2020) is that most investor attention to particular stocks is latent, until attention is stimulated by the arguments of their personal network. This attention to particular stocks reaches a level that overwhelms the remaining rational investors who would normally arbitrage price back to fundamental levels. We directly test whether such a threshold level of attention exists for individual stocks, and find a consistent increment in attention when returns reach a monthly threshold of + 20 percent.

The set of stocks that investors pay attention to can change, usually if a new stock comes into the opportunity set of a particular investor. Precisely when a new stock comes into an investors opportunity set is difficult to measure, so Barber and Odean (2008) instead test this idea by examining attention-grabbing events, such as returns, volume and news. We use the Barber and Odean (2008) idea of attention grabbing events, to motivate an investigation of these events on investor attention. In the Chinco (2020) model, past returns are the a bubble triggering mechanism, but one could imagine news events being a trigger as well, perhaps by driving returns above the Chinco (2020) threshold. In this paper we hope to provide some evidence on how *much* returns and news stimulate attention. In this way, we hope to provide some parameters for the next generation of models that explore the effects of attention on stock prices. We find that both returns and news have a strong effect on investor attention, but the effect of abnormal volume is modest.

To conclude, we examine the effect of abnormal attention on future returns. We find that future month t + 1 returns are negatively related to attention, particularly for the highest attention portfolio. When we examine this portfolio, we find that current returns are particularly high, suggesting that the future returns are likely a reversal from prices that were driven away from fundamentals due to the demand generated by the high level of investor attention. We view these results as consistent with the model of Hendershott et al. (2021). The unpredictable nature of attention that we show in the data makes the market makers inventory problem particularly difficult. When the episodic liquidity demands in Hendershott et al. (2021) are unpredictable, as they are in our attention data, the large demand arising from high attention can temporarily distort prices and create pricing errors. The fact that our month t + 1 returns appear to be reversals from prior-month attention driven price effects, suggests that the uncertain nature of investor attention is an important factor in the development of the pricing errors found in Hendershott et al. (2021).

## 2 A Framework for aggregate attention

### 2.1 Aggregate Attention

Most of the attention-based literature in economics uses an attention-augmented decision utility of the form  $Max_a U(a, x, m)$ , where a is a particular action to take, x is a signal of the true value, which can be multidimensional such as when a purchase has several quality dimensions, and m is an attention parameter. In this literature, m is usually parameterized [0, 1], from no attention to full attention. But this parametrization does not really suite our focus on aggregate attention. Economists usually confront the attention problem as one of inattention to a signal, wherein if an actor is paying full attention to the signal, the variance of the signal would approach zero. Therefore, her optimal action would be the fully informed action since m = 1 (Gabaix and Laibson 2006, Chetty, Looney and Kroft 2009, and Gabiax 2014). A degree of inattention to a signal would yield m < 1, and the inattentive actor would make a suboptimal decision. Gabaix (2018) states the case that many of the problems found in behavioral economics can be framed in this inattention framework, including inattention to taxes, nominal price illusion, hyperbolic discounting, and most interesting to a finance audience, overreaction and underreaction.

A common feature of this literature is an inattentive (m = 0) default. One application of this framework is Greenwood and Shleifer (2014), where overreaction and underreaction are caused by an investor having to pay attention to a large number of AR(1) processes, say stock prices, or interest rates, and the inability to identify the true process in each case can lead investors to anchor on the average autocorrelation, used as the inattentive default. Investors thus, incorrectly evaluate the autocorrelation of a specific price process, and underreaction and overreaction follow directly.

How much attention do investors pay to stocks? How much attention *should* they pay to stocks? To make observations on the cross-sectional patterns of aggregate attention meaningful, we need some benchmark for rational investor behavior. When one sets out to develop such a model, the researcher is presented with a large number factors that likely influence how much attention an investor pays to the stock market in general, and to particular stocks. Some of these factors could be (i) their aggregate wealth in the market, (ii) the ability of particular stocks to generate positive or negative alphas, or (iii) their opportunity cost of paying attention to the market. Using this limited set of proposed factors, we produce a general attention function as:

$$a_{i,j} = f(W_{i,}, \alpha_j, c_i), \tag{1}$$

where  $a_{i,j}$  is the attention of investor *i* in stock *j*,  $\alpha_j$ , is stock *j's* potential outperformance or underperformance,  $W_i$  is the investor's total wealth in the stock market, and  $c_i$ is investor *i's* opportunity cost of paying attention to the market. Some of these variables are notoriously hard to measure, but we can make significant progress towards an aggregate attention benchmark if we assume only that one of the partials,  $f'_j(w_{ij}) > 0$ , where  $w_{ij}$  enters Equation (1) from the well-known definition of an investor's portfolio wealth:

$$W_i = \sum_{j=1}^N v_{i,j} \tag{2}$$

where, for N stocks,  $v_{i,j}$  is the value of investor i's wealth in the stock j, and  $w_{i,j}$  is then equal to  $v_{i,j}$  normalized by portfolio wealth,  $W_i$ . Given our partial derivative assumption, investors will pay proportionally more attention to stocks that represent a higher proportion of their invested wealth.

We do not know what each individual investor's holdings,  $w_{i,j}$  are in a particular asset, so

we make no predictions about individual attention, but we can make a reasonable conjecture about stocks in aggregate. Fortunately, we have an easy to calculate benchmark for the proportion of aggregate wealth in a security in the market capitalization weight. Since aggregate wealth in the market is the sum of all individual positions, aggregate wealth in a stock is equal to the sum of all individual investments, or  $w_j$  after normalizing by total wealth. Given our partial derivative assumption,  $f'_j(w_{ij}) > 0$ , the greater the aggregate wealth of all investors in stock j, the more attention stock j should receive.

We do not know investors' attention capacity, their wealth in the market, or their opportunity costs of attention, so we can't say anything about the total amount of attention they spend contemplating their portfolios. But we can use the market cap weight benchmark to focus on the relation between the proportion of attention allocated to a particular stock and its market cap weight. Using this idea as our null hypothesis: Attention to a particular stock should be proportional to its relative importance to all investors, the latter measured by its market cap weight. If Apple is ten times the market cap of Boeing, then our null hypothesis is that investors should pay ten times as much attention to Apple relative to Boeing. Several well-off investors that I know personally invest in index mutual funds, primarily through retirement accounts and pay very little attention to the fluctuations of the market, but these index investors will be dependent on investors that pay attention to keep prices relatively efficient and their index strategy a reasonable one. Using the idea of market capitalization weights as a benchmark, then in aggregate investors should pay attention to the stocks in the market in proportion to their representative market capitalization. Under this null, attention should be proportional to:

$$a_j :: w_j \tag{3}$$

where  $w_j$  is the market cap weight of a particular stock j, and  $a_j$  is the amount of aggregate attention received by stock j.

Clearly, investors could pay too much attention to stock j, whether they are attracted by news, past returns, or abnormal volume as in Barber and Odean (2008), or some particular attention-grabbing feature of the firm's operations.<sup>2</sup> But if they do, then the attention they pay to some other stock k will be deficient. Hence the parameter  $a_j$  can be greater or less than  $w_j$ , the market cap weight. Most investors will only pay attention to a subset of stocks (Merton, 1987), so  $a_j$  will clearly be less than  $w_j$  for the stocks they are not aware of. Since most, if not all, investors are likely to hold different portfolios, all investors are likely to pay too much attention to certain stocks, and little or no attention to other stocks. But how do these different piecemeal sets of attention allocation aggregate across all investors? Answering this question is the basis of the first set of empirical tests in the paper, and to our knowledge the first attempt to identify investors' aggregate attention function.

To examine aggregate attention, we need some compact measure to indicate whether the aggregate set of attention across all investors is rational, at least as under the assumption that aggregate attention proportional to market cap weight is rational. To do this, we rely on a power law function,  $Y = kX^{-\zeta}$ , where the exponent,  $\zeta$  is referred to as the power law exponent. The power law relation can tell us whether the aggregate level of attention coincides with the aggregate distribution of market capitalization. The particulars on power law estimation follow immediately below. When we examine these power law distributions, we see there are many cases where the power law coefficients of attention are quite similar to the power law coefficients of market cap. However, when we dig into the data, we find that the overlap of stocks within the top n market cap stocks and the top n attention stocks is much less than 100 percent. We will refer to these differences as Distraction, defined as:

$$Distraction_j = w_j - a_j. \tag{4}$$

Because we know little about the investors attention-augmented utility function, we cannot say much about how much effort should an investor spend on allocating attention to stocks. Although some would argue 'none', Grossman and Stiglitz (1980) show that 'none' is not an equilibrium for all investors. As fewer investors pay attention to stock prices, the

 $<sup>^{2}</sup>$ By operations, we envision firm's who began a presence on this internet in the 1997-2000 internet bubble, or electric vehicles and Bitcoin today.

potential benefits of attention increase for those whose opportunity cost of attention is lower, or whose cost of acquiring information is smaller. Observationally, many investors pay close attention to stock prices, and others prefer indexing with little attention paid to individual stocks. We are interested in how these different levels of investor attention aggregate across all stocks. To put some economic content into our empirical analysis, we need to think about what the levels of aggregate attention should look like across stocks. We use aggregate wealth as out benchmark. Since aggregate wealth in a particular stock relative to other stocks is represented by  $w_j$ , the Distraction measure serves as our null. Under this null hypothesis, aggregate attention should be proportional to investors aggregate wealth in a particular stock. Empirically, calculating the weights in  $a_i$  and  $w_i$ , is feasible using market cap weights as the null for the empirical attention weights,  $a_j$ , but it is more convenient to initially examine the attention rank of a stock against the market cap weight rank. Using ranks maintains the ordinal ranking of market cap weight percentages, but has the advantage of being easily translatable into a power law, a convenient function for assessing concentration across a large set of stocks. We construct *Distraction* as market cap rank minus attention rank so that under the null: Distraction = 0, where the attention rank of a stock is precisely equal to its market cap weight. A positive level of *Distraction* represents an overweighting of attention under the null, and a negative level of *Distraction* represents an underweighting of attention.

## 2.2 Power Laws

Power laws are simple exponential models that have recently adapted to economic situations. For example, Gabaix (2011) estimates the power law of firm sales to GDP to argue that shocks to important firms can have widespread effects in the economy. Goldstein et al. (2009) find that the degree of broker concentration for institutional order flow is easily expressed as a power law. Blakrishnan, Miller and Shanker (2008) examine the distribution of daily stock volume using a power law. Saglam, Moallemi, and Sotiropoulos (2019) apply a fractional exponent power law process to calculate price impact costs of institutional trades. Gabaix (2009, 2016,) discusses many examples of power laws applied to economics and finance including, city size, number of firm employees, income, wealth, and CEO compensation.

A power law is a simple mathematical relation between two variables:

$$Y = kX^{-\zeta} \tag{5}$$

Where k is a constant, that is often separated and empirically less interesting. After taking the log of the equation.  $\zeta$  is referred to as the power law coefficient, and is generally negative. The power law coefficient can then be estimated as a linear equation usually by using the rank of a particular firm as the Y variable, and the raw number be it firm size, wealth, or in this case, the number of Stocktwits posts in a particular period. Taking logs and using our attention variable as the independent variable produces the linear equation:

$$\ln(Rank_{i,t}) = k - \zeta \ln(Posts_{i,t}) + \varepsilon$$
(6)

where  $Rank_{i,t}$  is the rank of a particular stock *i* in terms of posts in month *t*, and  $Posts_{i,t}$  is the number of posts about the stock in that month. The power law coefficient,  $\zeta$ , is the coefficient of interest, it describes how concentrated is the distribution of attention across stocks. As we move down in rank from most popular (Rank = 1) to the second most popular stock (Rank = 2), the raw number of posts will drop off at a speed determined by  $\zeta$ . In an analogous manner, we can examine the power laws of market capitalization and trading volume. A higher  $\zeta$  means a higher degree of inequality in the distribution, therefore if  $\zeta(attention) > \zeta(market cap)$ , we can conclude that investor's attention is too concentrated in just a few stocks relative to what a rational distribution of attention should be given the aggregate level of investment in the stock market. Our tests are not limited in scale, so we can test how the power law coefficient, and the relation between attention and market capitalization varies across different numbers of ranked stocks. Specifically, over the Top 50, 100, 200, 500 and 1,000 stocks for each variable. Typically, the regressions have

extremely high  $R^2$  values, indicating that the simple power law model does a good job of explaining relative concentration across a large group of stocks.

#### 2.2.1 Volume

Motivated by papers that link attention to trading volume, we also examine the power law coefficient for monthly trading volume. Barber and Odean (2008) show the link between attention grabbing events and order imbalance. Hendershott, Menkveld, Praz and Seasholes (2021) derive a model where investors are inattentive in such a way that makes their liquidity demands difficult for liquidity providers to predict. The authors contend that these liquidity shocks are associated with significant pricing errors. As a first step, we will look at how well the power law for attention tracks the power law for volume. It will also be important to see how predictable from period to period is the set of high attention and high volume stocks. Even if the power law coefficients between attention and volume are similar, what stocks investors are paying attention to is key. If the set of stocks that investors pay attention to varies considerably from month to month, liquidity providers will have a difficult time predicting where liquidity shocks occur, and pricing errors can result. In this way, we are testing whether investor behavior is consistent with the market maker problem in Hendershott, et al. (2021). If liquidity demands are difficult to predict from month to month, the market maker will be unlikely to have inventory to offset the resulting trading demands, and pricing errors could occur.

## 3 Data

The Stocktwits data set for investor attention uses over 76 million for 75 months from January, 2011 through March, 2017. The data consists of a series of posts identified by a '\$SYMBOL' hashtag as pertaining to a particular stock. Stocktwits number of posts has been growing rapidly. However, data before 2011 is sparser and does not cover as large a universe of stocks every month. The data is obtained directly from Stocktwits API, but at present the data set cannot be extended to more recent months because Stocktwits has restricted research access to their API. All posts in the sample have a single hashtagged stock as the subject. Occasionally, investors also post about indices, currencies, or commodities, but we restrict the sample to single stock posts with share codes less than 30. The bulk of these posts cover share codes 10 and 11.

Other similar data sets have been accessed and are reasonable substitutes for Stocktwits. However, due to the volume of data, existing studies are sometimes limited in scope or scale. For example, Bordino et al., (2012) study the relation between daily volume and Google search queries, but only cover the NASDAQ 100 stocks over a single year. Four years of Twitter activity is used by Rakowski, Shirley, and Stark (2020) to examine return and volume predictability. Stocktwits has been used as a data source by Giannini, Irvine, and Shu (2018), Giannini et al. (2019), Cookson and Neissner (2020), Cai, Yung, and Zhu (2019), Cookson, Engelberg, and Mullins (2020).

The news data sample comes from Ravenpack. We only include articles with relevance score equal to 100. The relevance score is a Ravenpack provided confidence score to indicate how certain their algorithm is that an article is really about a specific stock. Requiring a relevance score of 100 is a standard filter (Gao, Parsons and Shen, 2018). For each stock we calculate the number of articles each month from three sources: the Dow Jones Newswire, PR Newswire, and Web edition, a heading that includes major publishers, government and regulatory agencies, and local and regional newspapers. We also record a news sentiment score. Although also a Ravenpack proprietary algorithm that is unfortunately opaque, the news sentiment measure has been used effectively by Hendershott, Livdan, and Schurhoff (2015). The sentiment score is bounded between -1 and 1 based on Ravenpack's Event Sentiment Score.

Data on returns and volume comes from the CRSP monthly database. Stock financial information and earnings report date data are taken from the CRSP-Compustat merged database. Finally, data on analyst coverage is collected from the IBES database.

### 3.1 Sample

Panel A of Table 1 presents aggregate statistics on the Stocktwits post sample. Total posts and number of stocks are yearly totals, while average posts per stock and the maximum number of posts per stock are monthly averages. The sample is growing rapidly from around 55,000 post per month in 2011 to 2.6 million posts per month in 2017. This growth in activity is reflected in the average number of posts per month, which rises from 32.9 in 2011 to 768.2 in 2017. The stock universe covered is fairly broad throughout the sample period, with a minimum number of 3,655 in 2011 to a maximum of 4,731 in 2015.

Panel B of Table 1 presents similar summary statistics for the news article sample. The total number of recorded articles has also been growing, but more modestly, from 56,000 articles per month in 2011 to 126,000 articles per month in 2017. The average number of articles per stock does not show the same growth as the Stocktwits sample as it is fairly stable in the range of 33 to 39 articles per month. With the number of stocks covered in rough alignment to the pattern of the Stocktwits sample, the growth in the number of articles reflects a more balanced pattern, with more stocks receiving some attention, so that the overall distribution is less skewed over time.

To get an idea of the specifics of the post and news data, Table 2 presents the 40 individual stocks that were most often the Top 20 attention gathering stocks in a particular month. Frequency is the number of times the stock was in the Top 20 most mentioned stocks, 75 being the maximum. Stocktwits rank, Market Cap rank and Volume rank, are the average ranks for posts, market cap, and shares traded when the stocks made the Top 20. Apple (AAPL) is the most mentioned stock, being in the Top 20 every month, and gathers the most posts, with an average Stocktwits rank of only 1.32. Amazon and Google (Alphabet) were also in the Top 20 every month. Facebook (FB) is in the Top 20, 59 times, especially impressive since they were not public for the entire sample period. Typically, stocks that are often in the Top 20 category have similar ranks for either size or volume, but not always. Certain smaller capitalization stocks, like PLUG (Plug Power), ZNGA (Zynga) or GPRO

(GoPro) sometimes capture an outsize level of attention. Large financials like BAC (Bank of America), GS (Goldman Sachs), and JMP (JP Morgan) are also prominent. Surprisingly, stocks that are perennial losers like BBRY (Blackberry) or JCP (JC Penney) also make the list, showing that investors have a consistent interest in these underperformers (Odean, 1999), perhaps foreshadowing the Gamestop episode. Most volume ranks are within a reasonable range of the Stocktwits rank considering that there are often upwards of 4,000 stocks in the sample. Several high priced stocks, such as LNKD (LinkedIn) and PCLN (Priceline) likely are under ranked on our shares traded metric relative to what their ranks would be under a dollar volume metric. The table also reflects a heavy sprinkling of technology stocks.

Similar data is presented in Table 3 for the stocks that were most often in the Top 20 news articles in a month. This list is a bit more predictable than the posts list in Table 2. Most of the stocks are large cap stocks. AAPL again leads this list and is the most covered stock by news reports. In this list several large financials, and Dow Jones stocks, such as GM (General Motors) T (AT&T), DB (DeutscheBank), and MS (Morgan Stanley) are heavily reported on, but have more moderate attention ranks. The only stocks that are relatively low on all ranks other than news, yet still are heavily reported, are the financials DB, and RJF (Raymond James Financial). FCAU was the symbol of Fiat Chrysler, reflecting the fact that the automobile industry tends to have more news articles than Stocktwits interest. Another financial RY (Royal Bank) makes this news list, but has the lowest Stocktwits rank and the second lowest volume rank. The news appears slanted, at least relative to investor attention, towards Dow stocks, financials, and automakers.

## 4 Results

## 4.1 The power law of attention

We examine the concentration of attention across stocks by estimating the power law coefficient using Equation (6). First, we sort stocks every month by the number of posts, so that

the stock with the highest number of posts has Rank = 1, and continue until all stocks with post activity in a month have been ranked. We then take logs and estimate Equation (6) for 5 different sets of stocks from 50 stocks to 1,000 stocks.<sup>3</sup> Figure 1 plots the distribution of the power law coefficient,  $\zeta$ , over 75 months of estimation. For clarity, Figure 1 presents pairwise distributions of 100, 200, 500, and 1,000 stocks. A more negative  $\zeta$  coefficient indicates a distribution that has higher concentration towards the top end of the relevant set of stocks.

Panel A of Figure 1 reports the power law coefficient distributions of attention and size (market capitalization). We first look at the pairwise distributions of the Top 100 stocks and find a notable pattern. The two distributions overlap considerably, and the means of the two different distributions are quite close (-1.72 and -1.65). What this means is that, for the Top 100 stocks, investors are allocating their attention in much the same way as the market allocates market cap weights. There is no ex ante reason why these two patterns should overlap so much. In fact, anecdotally many suggest that investors are much too highly concentrated in attention-grabbing stocks, but this anecdotal impression is incorrect. For the Top 100 stocks, investors appear to allocate their attention rationally, at least under the null of Section 2.

The results change a bit as we add more stocks to the power law estimation. For 200 stocks, the mean of the attention power law distributions has crept away from the power law coefficient of market cap. Although both averages have fallen, there is a larger gap between the two (-1.61 and -1.41). This finding indicates that investors are paying too much attention to the top stocks, relative to the null. As we increase the number of stocks analyzed to 500 and then 1,000, the distributions appear to separate more and more, and the distribution of market cap power law coefficients is more compact than the diffuse distribution of attention power law coefficients. As we analyze more stocks, investor pay relatively too much attention to the most important stocks, relative to their market cap weights. If these results are a

<sup>&</sup>lt;sup>3</sup>We add 0.5 to the rank before taking logs as suggested by Gabaix (2016).

proxy for how humans pay attention across a large set, the results show behavioral support for the neglected firm effect (Arbel and Strebel, 1982). We do not appear to pay enough attention to the lower market cap weight stocks.

For comparison purposes, Panel B presents the power law distributions of attention and trading volume. For all sets of stocks the distributions overlap considerably, and the means are reasonably close together. However, when we examine 1,000 stocks, the distributions begin to separate with volume even more concentrated than attention. Nevertheless, we conclude that, at least in aggregate, attention and volume tend to have the same concentration. Whether they are concentrated on the same set of stocks is a question we will address below.

Finally, Panel C compares the distributions of size and volume. The pattern is similar to that of Panel A, but somewhat more pronounced. In general, volume is more concentrated than market cap, and by the time we examine the 1,000 stock distributions, the distributions are completely separate. As a rule, volume is more concentrated in the most active names than market capitalization, and tends to track attention much more closely than market cap.

This tracking pattern is easily seen in Figure 2, which presents the power law coefficient results across time for sets of 100, 500, and 1,000 stocks. In the 100 stock group the three power law coefficient distributions tend to track each other. The overall concentration for market cap stays pretty consistent, and while attention and volume coefficients track market cap quite well for the first half of the sample period, there appears to be an increase in concentration of both attention and volume in the second half of the sample period. For the 500 and 1,000 stock groups, the distribution of market cap coefficients is consistently lower than volume and attention, which tend to track each other quite closely. Notably, the attention coefficients are more volatile indicating that the level of attention concentration across stocks is less predictable. The increase in concentration for attention and volume halfway through the sample period that seems to be a feature of the Top 100 graph, is less apparent in the Top 500 and Top 1,000 graphs, although a slight increase in concentration

for these measures could be inferred.

#### 4.1.1 Inside the power law distributions

The evidence we have seen so far indicates that investors allocate their attention in a reasonable approximation of rational allocation in proportion to market cap weights. Table 4 presents the summary statistics of the power law regressions. We see that volume in general is the most concentrated, regardless of how we define a set of stocks. This means they have the most negative  $\zeta$  coefficients. But this is not a universal rule since market cap is actually the most concentrated in the set of 50 stocks. All estimated coefficients decline as we add more stocks to the test set. This finding indicates that both attention and volume tend to migrate towards a distribution that tracks the market capitalization distribution, but as we saw in Figures 1 and 2, attention and volume tend to remain a little more concentrated at the top than the market capitalization distribution. Market cap is the only variable that approaches, and actually reaches the Zipf's law coefficient of 1.0. A Zipf's law coefficient of 1.0 is found in such diverse data as word frequency and city size, and implies that the *nth* largest stock has a market cap that is  $\frac{1}{n}$  the market cap of the largest stock.

However, when we dig deeper into the data we find patterns that suggest the relatively neat and rational results from the power law distributions conceal a good deal of month to month volatility. Panel A of Table 5 reports month-to-month own correlations for our three measures. *Frequency* represents the average number of stocks in a particular sample in month t, that are also in the same sample in month t+1. *Percent* reports the *Frequency* as a percentage for easy comparison across stock groups. The data shows that the distribution of market cap is very stable; about 97% of the stocks that are in a Top group in one month, are also in the group the next month. The *Rank correlation* is a Spearmann correlation of the overall ranks between months t, and t + 1, and for market cap is very close to 1.0. For market cap, these very high correlations indicate that, even when a stock falls out of the Top 50 or Top 100, it is replaced by a similarly ranked stock, since the rank of the replacement stock cannot be that far out of the Top group for the rank correlation to remain so high.

Attention shows a more volatile pattern. The *Frequency* of stocks in a particular group from month to month ranges from 61 to 65 percent. Even when we extend the sample to 1,000 stocks there is considerable turnover in the stocks that attract the most attention. The rank correlation, which is much lower than the market cap sample, indicates that much of this turnover comes from stocks well outside the boundary of a particular group. Volume settles in the middle of the range between size and attention. About 80 to 87 percent of the high-volume stocks are represented in the same category from month to month, and the rank correlations also suggest that the stocks that replace the month t stocks come from outside the month t distribution, but not too far outside it. The risk to market stability and efficient pricing comes when a smaller stock attracts attention that also generates volume. This volatility generates unpredictable liquidity demands, which can affect the stock price, (Hendershott, et al. 2021). Alternatively, since the stocks that attract the most volume have a more stable distribution than the stocks that attract the most attention, not all attentiongrabbing stocks generate outsize volume demands. When there is no associated liquidity demand, the unusual amount of attention is benign with respect to the markets. Just how frequent each type of attention-grabbing event will be, is assessed in Panel B.

Panel B present the cross-sectional correlations in a particular month t. These crosssectional distributions answer questions such as how many of the Top 50 market cap stocks are also in the Top 50 attention stocks? The correlations are done in a pairwise fashion, as in Figure 1. There is not a good deal of overlap between the size and attention groups. Together with the results in Figure 1, these numbers indicate that attention, which appears rational from an average power law coefficient perspective, is actually not rational because it includes so few of the Top market cap stocks. In this Panel, the size of the sample makes a considerable difference; only 33.8 percent of Top 50 market cap stocks are also in the Top 50 attention stocks, and the rank correlation between size and attention is extremely low at 0.08.

The attention-volume comparison shows that between 36% and 53% of the stocks in the

high attention group are also in the high volume group. Roughly one-third to one-half of the attention shocks also generate a volume shock. Combined with the relatively low crosscorrelations between volume and size these results imply that when an attention shock does generate a volume shock, it will be extremely difficult to predict what stocks will be hit with liquidity shocks. Thus, the focus on inattention in Hendershott et al. (2021) is important when we look at actual investor attention data. It is very hard for the market maker to predict what stocks will receive the largest liquidity demands from month to month. Thus, unpredictable attention presents a difficult inventory management problem for the market maker. As attention, and thus potential liquidity demands, cannot be well predicted, the result is temporary price pressure that moves prices away from fundamentals. The rank correlations for all the comparisons in this Panel are quite low; all below 0.40. This finding suggests that any attention-driven liquidity demands are not very likely to come from stocks that are just outside the set of usual suspects, rather they will come from much lower ranked stocks that are neither large, nor trade heavily on a regular basis. The conclusion on the difficulty market maker's have in predicting where liquidity shocks will occur, and preparing with offsetting inventory, is apparent.<sup>4</sup>

## 4.2 Returns and attention

We know that extreme returns captures investor attention, but what does the returnsattention function look like? This is an important question for modeling cascades and information bubbles. For example, Chinco's (2020) model relies on a return threshold to ignite the investor confidence necessary to begin a stock bubble; but he has to pick an arbitrary past return that convinces ordinary investors that the speculators could be correct. Modeling the returns-attention function will help us determine if there is some level of past return that ignites investor attention. Motivated by the attention and trading study of Barber and Odean (2008), we are particularly interested on the effect of news and abnormal

<sup>&</sup>lt;sup>4</sup>It would be interesting to see how abnormal attention is correlated with abnormal volume. If these two measures are correlated, such a result would tighten the link between attention spikes and liquidity demand.

volume, as well as returns, on attention. But a number of other explanatory variables suggest themselves as well.

A nonparametric exploration of returns and attention We begin by regressing returns on different measures of attention including the absolute number of posts in a month, the log of the raw number of posts in a month, the Stocktwits activity rank of a firm, and *Distraction*, the difference between the market cap rank of a stock and the Stocktwits rank. Because we do not wish to specify the relation as linear, we run a non-parametric local regression (Cleveland, 1979) of the form:

$$Attention_t = g(Return_t) + e_t.$$
(7)

In this specification, g is a local linear or cubic regression function and e is a random error. For every observation  $Return_{i,t}$ , where i is a stock-month return, and t designates the particular month, the function  $g(Return_t)$  is estimated using observations near  $Return_{i,t}$ to form a local approximation. In a local regression, weighted least squares is used to fit functions of the predictors at the center of each local neighborhood near  $Return_{i,t}$ .<sup>5</sup> The result should be an approximation of the returns-attention relation without specifying a particular functional form on the data.

With over 180,000 stock-month observations, we chose to restrict the size of the output by showing four representative local regression plots using the period February, 2017 to March, 2017. Several other subperiods were examined in other years and other months, and the pattern is generally similar. One reason to restrict the plots to a shorter time frame is that the number of Stocktwits posts increases throughout the sample, and thus showing a graph of posts or log posts over the entire sample would be misleading.<sup>6</sup>

Panel A of Figure 3 presents the local regression plots of returns against the number of

 $<sup>^5\</sup>mathrm{Data}$  in each neighborhood is weighted by a decreasing function of its distance from the center of the neighborhood.

 $<sup>^{6}</sup>$ Returns are winsorized at 1% and 99% (approximately +- 40%) for clarity in these graphs.

posts and the log of posts. The striking feature of these plots are that contemporaneous returns strongly influence posting activity. The first plot of the raw number of posts is the more interesting. Returns between approximately -15% and +10% per month produce have no particular effect as posting activity, as the total number of posts fluctuates below the mean level. There also seems to be a marked increase in slope, a trigger point at about -25% and +15% where attention increases markedly, and continues steeply upward as absolute returns continue to increase. The plot of the log of the number of posts is much smoother, showing the same general pattern but with less of a return trigger point. The mean number of posts during these months is 1,185, a figure than can triple when returns reach more extreme levels. Returns not only capture attention, they capture a lot of attention relative to normal posting activity. We also see a fairly symmetric increase for both positive and negative returns, a finding consistent with Odean (1999) and Barber and Odean (2008) who propose that many contrarian investors focus on negative returns, just as optimistic investors focus on positive returns.

The plots in Panel B focus on rank, the first presenting Stocktwits rank, which gives some idea of how much a stock can move up in rank as a function of returns. The mean rank in the first plot is 1520, and stocks with returns around zero tend to be ranked lower than average. Rank increases rapidly and symmetrically as returns increase and decrease. The plot indicates that is possible for a typical firm to increase their attention rank by over 500 points if they have a month of particularly high or low returns. The final plot shows the Distraction between market cap rank and Stocktwits rank. Here, the mean is higher at 485, since several quite small firms in the CRSP universe nevertheless receive attention. This *Distraction* plot shows effects that are even greater in magnitude than the Stocktwits rank plot. Small stocks with either high positive or high negative returns attract attention far out of proportion to their market cap weight.

**News and attention** Panel C of Figure 3 presents two graphs outlining the relation between news and attention. The first graph plots the relation between the number of news

articles and Stocktwits rank, the second graph plots the relation between the number of news articles and *Distraction*. These plots are less striking than our returns and attention plots, except for a kink below the mean number of articles (51 in this period), the number of news articles rises sharply until about Stocktwits rank 500, and them more gradually increases towards a rank of 1. The second graph shows that *Distraction* is strongly positive for just a few articles, but drops steeply reaching a minimum at about 100 news articles per month, and then rises gently in the number of articles. These kinked patterns are likely related to small firms that usually receive little or no news coverage in a month. When they do receive news coverage their attention rank increases sharply, but quickly dissipates as larger, higher ranked firms normally receive a steady volume of news and the bulk of the graph reflects this relation.

#### 4.2.1 Predicting attention

**Explanatory variables** In this Section we estimate several panel data regressions for alternative measures of attention including the log of the number of posts, Stocktwits rank, and *Distraction*. The primary explanatory variables of interest are returns, news, and volume. For *Returns*, we split the returns sample into positive and negative to see whether the point estimates of the positive and negative slope differ, since the plots in Figure 3 look very symmetric, a closer examination is warranted. For *News* we use the total number of news articles in a month from our Ravenpack database (Tables 1 and 3). Volume is measured as abnormal volume, as in Barber and Odean (2008) and Da et al. (2011), we follow the latter example and calculate abnormal volume (*AbnVol*) relative to the average of the last three trading months prior to the observation month.

We also include a number of regressors that prior literature or investigation lead us to believe might influence the level of attention. First, we include *Advertise*, the advertising to sales ratio of the stock. We include this ratio because Grullon, Kanatas, and Weston (2004) find that advertising is positively related to the size of the shareholder base. In addition, Lou (2014) claims that firms use advertising specifically to attract retail investor attention. Lou's claims seem to contradict the findings in Da et al. (2011) who report that the advertising to sales ratio is often negatively related to individual investor trading reported through SEC Rule 11ac1-5 (Dash 5 reports). However, since Lou's (2014) claim seems tenable, we include the ratio here as a predictor of investor attention. We also include return threshold variables, that are dummy variables set to 1 if the contemporaneous stock return is greater than 20%, or less than -20%. Chinco (2020) motivates us to include these threshold coefficients, since he hypothesizes that surpassing certain return thresholds can trigger a jump in investor interest in a stock. We also include the book-to-market ratio (BtM) since Giannini et al. (2018) report that Stocktwits coverage tilts away from value firms. We include a dummy variable, *Announce*, that takes a value of 1 if earnings are announced in a particular stock-month. Following Da et al. (2011) and Giannini et al. (2018) we also include *Size*, the log of the market value of equity for a firm, the log of 1+ analyst coverage, *Coverage*, and idiosyncratic volatility, *Ivol*. We also include the news *Sentiment* variable from Ravenpack. Finally, we include dummy variables for *Tech*, the technology industry and *Pharm*, the drug industry, since observation leads us to believe that these type of stocks are investor favorites.<sup>7</sup>

Summary data on these variables is presented in Table 6. Firm size averages about \$8.0B, news sentiment and abnormal volume are centered around 0, which they should be from construction. Idiosyncratic volatility is the standard Distraction of the residuals from the market model, these reported daily averages gross up to 38 percent annually for the mean value and about 28 percent annually for the median value. Book-to-market averages 0.44, negative book values occur in almost 30 percent of the sample, and these observations are set equal to 0. The advertising-to-sales ratio averages 1.3%, with almost 75 percent of all firms reporting no expenditures on advertising. About 7.3 percent of the sample firms are *Tech* firms, and 8.9 percent are Pharmaceuticals.

**Determinants of attention** Table 7 presents the results of Panel data estimation of attention levels. In Columns (1) and (2), the dependent variable is the log of the number

<sup>&</sup>lt;sup>7</sup>The dummy variable Tech is set to 1 when the stock's SIC codes first 3 digits are 737. Likewise, the *Pharm* dummy variable uses the 3-digit SIC code 283.

of posts about the stock in a month. In Column (3), the dependent variable is Stocktwits rank, so that a negative coefficient represents a variable that moves the stock closer to the Top rank (= 1). Column (4) estimates the determinants of *Distraction*, where a positive *Distraction* represents a stock that captures proportionally more attention than its market cap rank would warrant. For reasons outlined below, *Distraction* is a skewed variable that tends to have a positive mean, so for analysis we standardize *Distraction* by transforming it into a standard normal variable. The standardized variable is almost perfectly correlated with raw *Distraction*, but has the advantage of having easy to interpret effects on future returns in Table 8.

The first two regressions measure total post activity, given the change in the number of posts over the sample period, these regressions use monthly fixed effects, and 'Huber-White' standard errors (Rogers, 1993). Larger stocks capture more attention, consistent with our null hypothesis that aggregate attention should follow market cap weight. Last months returns (Lag Returns) are positively related to attention, indicating a certain amount of trend following in attention. A biological explanation of trend following is provided by Anderson et al. (2016) who show that attention to activities that have produced rewards in the past is associated with a dopamine release caused by the positive feedback the attention to that stock has rewarded the individual with in the past. Their findings indicate that attention this month could be chemically rewarding if attention last month produced positive rewards, and is an novel explanation for trend following in an efficient market.<sup>8</sup> In Column (1) positive returns do not have a significant effect on attention, though negative returns do. To explain the lack of reaction in positive returns, it is revealing to look at the return threshold coefficients in Column (2). Both positive and negative return threshold coefficients are significant, indicating that returns greater than twenty percent have a marked effect on the level of posts, in particular for positive returns. The impact of a threshold value of returns on attention is consistent with Chinco's (2020) assumption that there is a threshold

 $<sup>^{8}</sup>$ The other nine authors on this paper are omitted from the text and references. Interested readers can refer to: http://dx.doi.org/10.1016/j.cub.2015.12.062

in returns that tends to excite the interest of speculative investors.

News and news sentiment are both positively related to the number of posts, but abnormal volume is not. This latter result is surprising given Barber and Odean's (2008) conclusion that abnormal volume is a stronger influence than either news or returns on the trading order imbalance. Part of the explanation of this difference is given by Barber and Odean (2008) who note that their order imbalance activity measure is almost tautologically related to abnormal volume. Table 7 also includes more possible variables as influences on attention, which might capture some of the abnormal volume effect, or there may be an (untested) threshold level of abnormal volume that triggers attention, as there is for returns. Analyst coverage is strongly associated with attention, despite its high correlation with size.<sup>9</sup> Idiosyncratic volatility is associated with positive attention; investors pay attention to volatile stocks. Book-to-market is negatively associated with attention, confirming the finding in Giannini et al. (2018) that growth stocks tend to capture more attention. The coefficient on advertising is positive and significant indicating some support for the conjectures of Grullon et al. (2004) and Lou (2014). The earnings announcement month, not surprisingly, also tends to capture attention associated with this important information release. Both technology and pharmaceutical firms are positively associated with greater attention.

Column (3) uses Stocktwits rank as the dependent variable. Stocktwits rank is calculated each month, as is *Distraction*, so the growth in sample size that necessitated monthly fixed effects is not an issue in these specifications. However, Table 2 reveals that certain firms are highly ranked relative to their market cap on a regular basis. To capture any firmspecific attributes that are not controlled for with the set of included regressors, we include stock fixed effects in the specifications in Columns (3) and (4). The discussion of these results will focus on coefficient estimates that are different for Stocktwits rank than those of the log of total posts specifications. These differences begin with the fact that the returns threshold effect is even more clearly delineated in this specification. Both return variables

<sup>&</sup>lt;sup>9</sup>The regression results are similar if we drop either of these two highly correlated variables from the specification.

are insignificant, but both threshold dummy variables are significant. This finding indicates that firms receive relatively more attention only when their returns reach a certain threshold. The abnormal volume coefficient is negative and significant in this specification, indicating a rank closer to 1, but the advertising coefficient has no significant effect on Stocktwits rank. Technology firms are associated with a rank closer to 1, but pharmaceutical firms are not.

Finally, Column (4) examines *Distraction*, the Stocktwits rank less the market cap rank. In this specification, the coefficient on market cap is negative and significant, which is a little odd given the dependent variable already controls for market cap rank. The explanation likely arises from the asymmetry arising from the fact that there are some small stocks that can, at times, capture a good deal of investor attention, whereas a large cap stock like Apple, cannot go up from the number 1 position in the Stocktwits rank, but could occasionally drop to number 2 or 3. Last month's returns are significantly associated with *Distraction*, and the returns results reflect the same threshold level of attention gathering that is represented in Column (3). News and Sentiment are significantly positively related to *Distraction*, as is abnormal volume. Generally, the variables that affect Stocktwits rank affect *Distraction*, and we already know from Table 5 that market capitalization rank is quite stable.

### 4.3 Deviations in attention and future returns

We conclude our examination of aggregate attention with an exploration of whether *Distraction* affects future returns in month t + 1. Our motivation for this analysis comes from Ibbotson and Idzorek (2014), and Ibbotson, Idzorek, Kaplan and Xiong (2018) who hypothesize that many risk premiums can be related to the popularity of a stock, or specifically, the premiums are related to unpopularity. The economic motivation behind this hypothesis is that popularity drives demand and thus prices and future returns. In one sense, the theory is similar to Merton (1987) where investors only trade in the set of stocks they are aware of. *Distraction* is an excellent measure of popularity, since the Stocktwits rank directly measures a stock's

popularity and it is benchmarked against the null of market cap rank, so it has popular and unpopular dimensionality.

In Table 8, we test the relation between *Distraction* and returns in a regression framework (Panel A), and a portfolio sort (Panel B). The regression uses month t + 1 return as the dependent variable, and includes three different measures of *Distraction*. In Columns (1) and (4) we use the standardized *Distraction* itself, Columns (2) and (5) examine positive Distractions only, and Columns (3) and (6) examine negative Distractions only. We split the variable into separate analysis because the Ibbotson et al. (2014, 2018) theory states specifically that unpopular stocks will tend to have a risk premium, so we test the overall effects as well as the effects of unpopular stocks (Distraction (-)), and popular stocks (Distraction (+)) separately. We control for a stock's market cap and book-to-market ratio, since these are characteristics well known to be related to returns. Noting the trend following in the specification of Table 7, it is also important to control for the momentum effect, so we include a number of lagged returns including last month's return (Ret1), as well as other past months returns for months two to three (Ret2 - 3), four to six (Ret4 - 6), and seven through twelve (Ret7 - 12). To test for a popularity effect, we run monthly regressions over the 75 month sample period, and present Fama-MacBeth average coefficients and standard errors in Table 8.

Column (1) reports a significantly negative relation between *Distraction* and future returns. More popular stocks, relative to market cap weight, tend to do worse in month t + 1. This is confirmed in the specifications in Columns (2) and (3). Positive *Distraction*, the relatively popular stocks earn lower returns, while negative *Distraction* stocks earn insignificant negative returns. These results, using a direct proxy for popularity, contradict the Ibbotson et al. (2014, 2018) popularity theory, wherein unpopular stocks should have a risk premium. In defense of the popularity theory, we only have 75 months of data, and only examine month t+1 returns. Ibbotson et al. (2014, 2018) also posit that unpopularity could account for the return effects associated with size and book-to-market, so their popularity effect could be associated with the inclusion of these variables. But exclusion of these variables, does not change the returns associated with *Distraction*, so we are left with a puzzle. Why do popular stocks earn a negative return premium, especially in the presence of past returns to control for momentum effects?

We have a number of extreme returns in the sample, monthly returns ranging from -93 percent to over +400 percent. To control for the possibility that these extreme outliers affect our conclusions about the popularity hypothesis, we winsorize the data at 1% and 99% (< -35% or > 44%) and rerun our regressions. These results are presented in Columns (4)-(6). Removal of the extreme outliers from the returns distribution, increases the t-statistics on past returns, but does not remove the negative premium associated with popular *Distraction* stocks. Stocks that receive aggregate attention greater than their market cap weight percentage, earn lower future returns in the upcoming month.

Panel B of Table 8, presents a portfolio sort of *Distraction* and month t + 1 returns. To construct this Table, we sort *Distraction* into deciles and examine the next month's return in each decile. The portfolio sort reveals that the popularity effect is not linear in the value of *Distraction*. Instead, there is almost no difference in monthly return across the five lowest deciles, whereafter, month return drops slightly in deciles 6, 7, 8, and 9, but drops precipitously in decile 10. The negative relation between *Distraction* and returns is concentrated in the most popular stocks.

The portfolio sort reveals two key facts. First, month t returns in decile 10 are considerably higher than those in any other decile, and this fact provides an explanation for the low future returns in this decile. It is likely that high attention firms in this decile, (average standardized *Distraction* is 1.96 in this decile), and the unpredictable nature of attention, cause difficult to predict liquidity shocks outlined in the Hendershott et al. (2021) model. These liquidity shocks generate the temporary mispricing found in that paper, a mispricing effect that mean reverts in the following month.

There is one more noteworthy finding in Panel B of Table 8. Except for portfolio 1,

month t returns are higher, sometimes considerably higher, than month t + 1 returns. Since there are 74 months of overlapping returns in the sample, and only one month of independent future returns, this finding would be near impossible in a complete data set. However, the Stocktwits data is a censored data set because if there is no posting activity in a month, the stock will not be in the data set. Although we present data in Tables 2 and 3 on the most often mentioned stocks, there must be some fraction of stocks that only receive a mention when their returns are noteworthy. Contemporary returns can only be consistently higher than future returns if returns play a significant factor in whether some infrequently mentioned stocks receive *any* attention. The final lesson on Panel B is that we should be careful not to underestimate the effect of high returns on investor attention.

## 5 Conclusion

We present an analysis of a large data set on aggregate attention. The paper builds a framework for understanding attention that states, in aggregate investors should allocate their attention across stocks consistent with their wealth across stocks, so that aggregate, attention should be proportional to market cap weight. We first examine whether this is true by estimating the power laws for attention, market cap, and trading volume across different sets of stocks. We find that aggregate attention looks rational, since it closely aligns with market cap weight for the most active sets of stocks. However, as we expand the universe of stocks, investors tend to possess a degree of neglect for smaller capitalization stocks relative to their market cap weight.

When we investigate the components of different sets of stocks, we find that this apparent rationality is ephemeral, as investor attention only covers between 33.8 and 65.0 percent of the individual stocks they should be paying attention to under the null. Further, the attention portfolios exhibit significantly more month-to-month turnover than the market cap portfolios. This makes investor attention, and the large liquidity demands that attention can generate, unpredictable for market makers, who are unable to predict inventory demand when attention is so volatile. We interpret these findings as supporting the pricing error results of Hendershott et al. (2021) who predict that inattentive investors cause unpredictable liquidity shocks that can generate these pricing errors. High-levels of investor attention have an unpredictable component that has pricing implications. We find support for this conjecture in the data since high attention portfolios predict negative future returns, but have high current returns. These return patterns suggest that unpredictable levels of attention generate liquidity shocks that market makers are not prepared for, and pricing errors occur in high attention months. These pricing errors are subsequently corrected in the following month.

This paper presents the first large scale collection of facts on investor attention in the stock market. We hope that these facts will guide the burgeoning research literature on attention. In actuality, we present a number of facts that are consistent with assumptions already theoretically proposed in the literature, including the relation of analyst coverage to attention (Atiglan et al. 2020), and a return threshold affect of attention (Chinco, 2020). On the other hand, proposed effects from variables such as abnormal volume (Barber and Odean, 2008) and advertising (Lou, 2014), have only modest affects on investor attention.

One of the potentially important findings in the paper is that aggregate attention reflects a behavioral tendency to concentrate too much on large cap stocks, generating the neglected firm effect. Small market cap weight firms, get less attention than they should under the null hypothesis. It would be important to confirm this effect using other measures of attention. One confounding issue is that some people may post on Stocktwits not only to share information with the crowd, but also to receive recognition of their opinions or efforts. Lightly followed stocks could discourage posters since feedback would be relatively rare. On the other hand the recent stream in GameStop (GME) during the wallstreetbets episode scrolled too fast for human comprehension of all the posts, and specific feedback was rare. One way to tell if there is a reward/recognition effect clustering attention in highly-followed stocks, would be to look at similar attention measures and see if they also exhibit similar concentration patterns. Unfortunately, Twitter, while accessible, would likely have an even worse recognition problem. Google Search Volume has potential, since it is unlikely that investors search for ticker symbols as a way of garnering recognition. Unfortunately, Google Trends provides a measure of popularity that is calculated relative to a stock's own historical search volume. Specifically, a percentage popularity relative to a stock's all time high number of searches over the relevant time period. This service unfortunately provides no raw data. However, it might be possible to get a crude measure of popularity by running comparative searches relative to a numeraire stock, such as Apple. The limitation with this method is that the relative popularity measures are imprecise (2 digit comparison), and most smaller stocks relative to Apple may not produced meaningfully differentiated statistics.

## References

- Anderson et al. (2016) The role of dopamine in value-based attention orienting, *Critical Biology*, 26, (4), 550-555.
- [2] Arbel, A. and P. Strebel, 1982. The neglected and small firm effects, *The Financial Review*, 17(4), 201-218.
- [3] Atiglan, Y., T. Bali, K. O. Demirtas, and A. D. Gunaydin, 2020. Left-tail momentum, underreaction to bad news, costly arbitrage, and equity returns, *Journal of Financial Economics*, 135 (3), 725-753.
- [4] Ben-Rephael, A., Z. Da, and R. Israelsen, (2017). It depends where you search: Institutional investor attention and underreaction to news, *Review of Financial Studies*, 30 (9), 3009-3047.
- [5] Balakrishnan, P.V., J. Miller, and S. Shankar, 2008. Power law and evolutionary trends in stock markets, *Economics Letters*, 98, 194-200.
- [6] Barber, B., and T. Odean, 2008. All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors, *Review of Financial Studies*, 21 (2), 785-818.
- Bogousslavsky, V., 2016. Infrequent rebalancing, return autocorrelation and seasonality, Journal of Finance, 71 (6), 2967-3006.
- [8] Bordino, B., Battison, S., Caldarelli, G., Cristelli, M, Ukkonned, A., and I. Weber. 2012.
  Web search queries can predict stock market volumes, *PLoS ONE*, 7 (7).
- [9] Cai, Q., K. Yung and Z. Zhu, 2019. Sentiment, attention and earnings momentum, Working paper, Old Dominion University.
- [10] Chetty, R, A. Looney, and K. Kroft, 2009. Salience and taxation: Theory and evidence, NBER Working paper No. 13330.

- [11] Chinco, A., 2020. The ex ante likelihood of bubbles, Working paper, University of Chicago.
- [12] Cleveland W., 1979. Robust locally-weighted regression and smoothing scatterplots, Journal of the American Statistical Association, 74, 82-836.
- [13] Cookson, T., and M. Neissner, 2020. Why don't we agree? Evidence from a social network of investors, *Journal of Finance*, 75 (1), 173-228.
- [14] Cookson T., J. Engelberg, and W. Mullins, (2020). Does partisanship shape investor beliefs? Evidence from the COVID 19 pandemic, *Review of Asset Pricing Studies*, 10 (4), 863-893.
- [15] DellaVigna, S., and J. Pollet. 2009. Investor inattention and Friday earnings announcement, *Journal of Finance*, 64 (2), 709-749.
- [16] Da, Z., J. Engelberg and P. Gao, 2011. In search of attention, *Journal of Finance*, 56 (5), 1461-1499.
- [17] De Clippel, G., K. Eliaz, and K. Rozen, 2014. Competing for consumer inattention, Journal of Political Economy, 122 (6), 1203-1234.
- [18] Duffie, D. 2010. Presidential address: Asset price dynamics with slow-moving capital, Journal of Finance, 65, 1237-1267.
- [19] Gabaix, X., 2009. Power laws in economics and finance, Annual Review of Financial Economics, 1, 255-93.
- [20] Gabaix, X., 2014. A sparsity-based model of bounded rationality, Quarterly Journal of Economics, 129 (4), 1661-1710.
- [21] Gabaix, X., 2016. Power laws in economics: An introduction, Journal of Economic Perspectives, 30(1), 195-206.

- [22] Gabaix, X., 2019. Behavioral inattention, in Handbook of Behavioral Economics, North Holland, Amsterdam, Netherlands.
- [23] Gabaix, X., and D. Laibson, 2006. Shrouded attributes, consumer myopia, and information suppression in competitive markets, *Quarterly Journal of Economics*, 121 (2), 505-540.
- [24] Giannini, R. P. Irvine and T. Shu, 2018, Nonlocal disadvantage: An examination of social media sentiment, *Review of Asset Pricing Studies*, 8 (2), 293-336.
- [25] \_\_\_\_\_, 2019, The convergence and divergence of investors' opinions around earnings news: Evidence from a social network, *Journal of Financial Markets*, 42 (1), 94-120.
- [26] Goldstein, M., P. Irvine, E. Kandel, and Z. Wiener, 2009. Brokerage commissions and institutional trading patterns, *Review of Financial Studies*, 22 (12), 5175-5212.
- [27] Greenwood, R., and A. Shleifer, 2014. Expectations of returns and expected returns, *Review of Financial Studies*, 27 (3), 714-746.
- [28] Grossman, S., and J. Stiglitz, 1980. On the impossibility of informationally efficient markets, American Economic Review, 70 (3), 393-408.
- [29] Grullon, G., G. Kanatas, J. Weston, 2004. Advertising, breadth of ownership, and liquidity, *Review of Financial Studies*, 17 (2), 439-461.
- [30] Hendershott, T., D. Livdan and N. Schurhoff, 2015. Are institutions informed about news? Journal of Financial Economics, 117, 249-287.
- [31] Hendershott, T., A. Menkveld, R. Praz, and M. Seasholes, 2021. Asset price dynamics with limited attention, forthcoming, *Review of Financial Studies*.
- [32] Hirshleifer, D. and S. H. Teoh, 2003. Limited attention, information disclosure, and financial reporting, *Journal of Accounting and Economics*, 36 (1-3), 337-386.

- [33] Hirshleifer, D., S.Lim and S.H. Teoh, 2009. Driven to distraction, extraneous events and reaction to earnings news, *Journal of Finance*, 64 (5), 2289-2325.
- [34] Ibbotson, R., and M. Izdorek, 2014. Dimensions of popularity, Journal of Portfolio Management, 40 (5), 68-74.
- [35] Ibbotson, R., and M. Izdorek, P. Kaplan and J. Xiong. 2018. Popularity: A bridge between classical and behavioral finance, CFA Research Institute, Charlottesville, VA.
- [36] Kacperczyk, M., S. Van Niewerburgh, and L. Veldkamp, 2016. A rational theory of mutual funds' attention allocation, *Econometrica*, 84 (2). 571-626.
- [37] Kahneman, D., 1973. Attention and effort, Prentice Hall, Englewood Cliffs, NJ.
- [38] Lou, D., 2014. Attracting attention through advertising, *Review of Financial Studies*, 27 (6), 1797-1829.
- [39] Merton. R., 1987. A simple model of capital market equilibrium with incomplete information, *Journal of Finance*, 42 (3), 483-510.
- [40] Odean, T., 1999. Do investors trade too much, American Economic Review, 89 (5), 1279-1298.
- [41] Rakowski, D., S. Shirley, and J. Stark. 2020. Twitter activity, investor attention, and the diffusion of information, *Financial Management*, 50 (1), 1-44.
- [42] Rogers, W., 1993. Regression standard errors in clustered samples, Stata Technical Bulletin, 13, 19-23.
- [43] Peng, L., and W. Xiong, 2006. Investor attention, overconfidence, and category learning, Journal of Financial Economics, 80 (3), 563-602.
- [44] Saglam, M., C. Moallemi, and M. Sotiropoulos, 2019. Short-term trading skill: An analysis of investor heterogeneity and execution quality, *Journal of Financial Markets*, 42 (1), 1-28.

[45] Yoshinago, C., and F. Rocco, 2020. Investor attention: Can Google search volumes predict stock returns, *Brazilian Business Review*, 17 (5).

#### Figure 1 – Power law coefficients as estimates of concentration

These figures present pairwise histograms of power law coefficient distributions. Linear power law equations are estimated over 75 months for Stocktwits attention, market capitalization, and trading volume. The figures show the distribution of coefficients and the sample average.



















#### Panel C. Size versus Volume







## Figure 2. The time series evolution of power laws

These figures present the power law coefficients of Stocktwits posts, market capitalization and trading volume over time. The coefficients are the same as those presented in Figure 1, but plotted by calendar month, from January 2011, through March, 2017.







## **Figure 3. Attention and Returns**

These figures present the fitted values from non-parametric regressions of attention and returns. Returns are winsorized at 1% and 99% (approximately + 40% /month) for clarity. This representative data comes from the period February, 2017 to March, 2017.











### Panel C: News and Stocktwits rank





#### Table 1

This table presents summary information on the Stocktwits data set and the Ravenpack news data set. *Total Posts* is the number of single-stock posts in the year. *Total Articles* is the total number of Dow Jones, PR Newswire and Web Edition articles per year on the sample stocks. *Average/Stock* and *Max* are monthly averages and maximums within the relevant year. Number of stocks is the total number of different stocks covered by the relevant data each year All data is from January, 2011 – March, 2017.

#### Panel A: Stocktwits summary data

| Year | Total<br>Posts | Average/<br>Stock | Max    | Number<br>Stocks |
|------|----------------|-------------------|--------|------------------|
|      |                |                   |        |                  |
| 2011 | 661,280        | 32.9              | 4,002  | 3,655            |
| 2012 | 1,559,803      | 58.1              | 10,123 | 3,976            |
| 2013 | 4,257,018      | 151.8             | 43,283 | 4,018            |
| 2014 | 14,795,233     | 460.0             | 54,302 | 4,290            |
| 2015 | 21,150,513     | 531.7             | 51,146 | 4,731            |
| 2016 | 26,594,848     | 747.6             | 74,429 | 4,243            |
| 2017 | 7,836,715      | 768.2             | 54,926 | 4,277            |
|      |                |                   |        |                  |

Panel B: Ravenpack summary data

| Year | Total<br>Articles | Average/<br>Stock | Max   | Number<br>Stocks |
|------|-------------------|-------------------|-------|------------------|
|      |                   |                   |       |                  |
| 2011 | 668,835           | 33.7              | 3,506 | 3,604            |
| 2012 | 1,012,395         | 38.2              | 3,792 | 3,889            |
| 2013 | 1,067,027         | 38.7              | 3,145 | 3,927            |
| 2014 | 1,091,906         | 34.4              | 3,769 | 4,239            |
| 2015 | 1,331,775         | 34.4              | 3,406 | 4,541            |
| 2016 | 1,384,619         | 39.2              | 2,663 | 4,174            |
| 2017 | 379,844           | 38.5              | 2,299 | 3,981            |
|      |                   |                   |       |                  |

#### Table 2. Rank analysis of highly mentioned stocks

This table presents rank information on often-mentioned stocks. *Frequency* is the number times the stock was among the 20 most highly mentioned stocks in a month. *Stocktwits* is the average rank over all months conditional on the stock being in the Top 20. *Market Cap* is the average monthly rank of the stock's market capitalization. *Volume* is the average monthly rank of the stock's volume. All data is from January, 2011 – March, 2017.

| ticker | _FREQ_ | idranks | sizes  | vols   |
|--------|--------|---------|--------|--------|
| AAPL   | 75     | 1.32    | 1.17   | 22.0   |
| AMZN   | 75     | 5.32    | 18.56  | 263.4  |
| GOOG   | 75     | 3       | 10.88  | 517.3  |
| MSFT   | 73     | 9.6     | 2.89   | 7.04   |
| NFLX   | 71     | 7.39    | 270.32 | 222.7  |
| FB     | 59     | 3.22    | 46.9   | 10.3   |
| BAC    | 56     | 10.04   | 24.0   | 1.05   |
| TSLA   | 47     | 7.72    | 197.85 | 173.8  |
| JPM    | 37     | 12.3    | 12.86  | 17.2   |
| TWTR   | 37     | 6.46    | 269.05 | 19.5   |
| GS     | 36     | 12.31   | 48.89  | 231.1  |
| INTC   | 32     | 14.81   | 22.84  | 7.91   |
| С      | 31     | 12.68   | 23.52  | 9.52   |
| LNKD   | 31     | 11.65   | 507.2  | 430.2  |
| PCLN   | 27     | 12.96   | 90.15  | 1053.1 |
| GILD   | 24     | 9.71    | 29.42  | 50.04  |
| CMG    | 23     | 14.17   | 333.9  | 1119.8 |
| IBM    | 22     | 15.09   | 14.59  | 202.3  |
| GPRO   | 20     | 10.6    | 1317.4 | 106.3  |
| YHOO   | 18     | 15.44   | 144.0  | 24.78  |
| BBRY   | 17     | 10.12   | 698.2  | 23.65  |
| HPQ    | 17     | 12.47   | 79.76  | 24.76  |
| RIMM   | 16     | 10.75   | 363.6  | 26.25  |
| WMT    | 16     | 14.13   | 8.5    | 82.94  |
| DIS    | 15     | 14.33   | 22.6   | 104.1  |
| MS     | 15     | 13      | 101.7  | 24.33  |
| Т      | 15     | 15.8    | 10.27  | 17.6   |
| DDD    | 13     | 11.31   | 733.7  | 249.4  |
| GMCR   | 13     | 14.08   | 380    | 218.8  |
| F      | 12     | 15      | 78.33  | 6.58   |
| SCTY   | 12     | 13.08   | 809.8  | 240.3  |
| PLUG   | 11     | 9.82    | 2365.5 | 42.18  |
| CSCO   | 10     | 14.7    | 27.8   | 6.1    |
| VRX    | 10     | 11.5    | 418.4  | 19     |
| YELP   | 10     | 12.1    | 986    | 186.6  |
| GE     | 9      | 14.67   | 6.0    | 5.33   |
| LULU   | 9      | 13.44   | 514.9  | 398    |
| ZNGA   | 9      | 9.78    | 1199.9 | 23.89  |
| FIT    | 8      | 13.13   | 1529   | 112.6  |
| JCP    | 8      | 17      | 1082.9 | 15.13  |

#### Table 3. Rank analysis of top news mention stocks

This table presents summary rank information on the stocks that were most often mentioned in the news. *Top 20 News* is the number times the stock was among the 20 most highly mentioned stocks in a month. *News rank* is the average of the *News rank* among all firms. *News, Stocktwits, Size* and *Volume* rank is the average rank over all months conditional on the stock being in the top 20. Data is from January, 2011 – March, 2017.

|        | Top 20 | News | Stocktwits | Size  | Volume |
|--------|--------|------|------------|-------|--------|
| TICKER | News   | rank | rank       | rank  | rank   |
|        |        |      |            |       |        |
| AAPL   | 75     | 1.45 | 1.32       | 1.17  | 22.0   |
| MSFT   | 75     | 3.69 | 10.1       | 2.88  | 7.11   |
| GM     | 72     | 8.50 | 91.2       | 89.4  | 47.4   |
| JPM    | 63     | 8.76 | 22.1       | 11.6  | 22.5   |
| GS     | 58     | 12.5 | 29.3       | 53.0  | 278.0  |
| FB     | 57     | 5.68 | 3.28       | 44.6  | 10.5   |
| Т      | 57     | 9.58 | 45.1       | 11.9  | 16.4   |
| BAC    | 56     | 10.3 | 12.9       | 23.4  | 1.09   |
| IBM    | 56     | 12.1 | 39.4       | 15.0  | 224.2  |
| AMZN   | 54     | 12.0 | 4.98       | 17.5  | 257.0  |
| F      | 51     | 12.9 | 47.6       | 78.8  | 7.00   |
| GE     | 51     | 12.5 | 53.2       | 5.86  | 6.69   |
| VZ     | 45     | 10.3 | 45.3       | 19.2  | 38.8   |
| BA     | 40     | 12.8 | 79.3       | 48.3  | 215.4  |
| GOOG   | 39     | 2.05 | 2.51       | 10.7  | 424.3  |
| WMT    | 37     | 12.8 | 34.4       | 8.86  | 87.7   |
| YHOO   | 36     | 10.9 | 38.3       | 156.0 | 30.3   |
| DB     | 35     | 11.2 | 600.3      | 140.0 | 477.8  |
| WFC    | 34     | 15.2 | 50.9       | 10.0  | 21.0   |
| TWTR   | 31     | 8.74 | 7.10       | 277.5 | 18.9   |
| С      | 30     | 12.9 | 18.5       | 23.3  | 11.7   |
| HPQ    | 29     | 13.3 | 59.0       | 82.7  | 31.4   |
| CSCO   | 28     | 12.8 | 37.0       | 27.9  | 6.68   |
| CMCSA  | 26     | 13.6 | 175.3      | 35.9  | 42.5   |
| MS     | 26     | 11.7 | 135.7      | 83.3  | 41.4   |
| RIMM   | 19     | 9.95 | 73.6       | 414.5 | 23.3   |
| TSLA   | 18     | 10.5 | 9.06       | 180.9 | 183.1  |
| NFLX   | 17     | 13.2 | 6.06       | 309.9 | 203.0  |
| INTC   | 16     | 13.9 | 18.4       | 23.06 | 8.38   |
| BBRY   | 15     | 13.0 | 16.7       | 766.0 | 27.2   |
| DIS    | 12     | 14.7 | 30.2       | 25.1  | 87.7   |
| EBAY   | 12     | 16.4 | 65.2       | 75.2  | 57.2   |
| FCAU   | 12     | 11.5 | 537.1      | 367.2 | 140.2  |
| ORCL   | 12     | 13.8 | 43.7       | 16.4  | 17.4   |
| QCOM   | 11     | 15.0 | 70.5       | 40.7  | 52.9   |
| RJF    | 10     | 10.8 | 1515       | 576.3 | 1122   |
| PFE    | 9      | 12.0 | 42.1       | 15.4  | 7.11   |
| RY     | 9      | 14.5 | 901.2      | 47.5  | 1107   |
| MCD    | 8      | 14.7 | 60.2       | 41.8  | 153.3  |
| VRX    | 8      | 9.00 | 13.1       | 462.9 | 21.1   |

## **Table 4. Power Law Statistics**

This table presents average power law coefficients across five sets of stocks, Stocks are ranked by their rank with respect to the variable in question. Sample covers the time period from Jan, 2011-March, 2017.

### Panel A. Attention

|                    |        | Attention | 1      |        |        |
|--------------------|--------|-----------|--------|--------|--------|
| Number of Stocks   | 50     | 100       | 200    | 500    | 1,000  |
| Mean Coefficient   | -1.788 | -1.721    | -1.611 | -1.400 | -1.166 |
| Standard Deviation | 0.270  | 0.249     | 0.216  | 0.155  | 0.124  |
| Mean R-Square %    | 97.1   | 98.1      | 98.5   | 98.2   | 96.5   |
| N=                 | 75     | 75        | 75     | 75     | 75     |

## Panel B. Market Capitalization

| Size               |        |        |        |        |        |  |  |  |  |
|--------------------|--------|--------|--------|--------|--------|--|--|--|--|
| Number of Stocks   | 50     | 100    | 200    | 500    | 1,000  |  |  |  |  |
| Mean Coefficient   | -2.021 | -1.650 | -1.419 | -1.165 | -0.974 |  |  |  |  |
| Standard Deviation | 0.183  | 0.074  | 0.034  | 0.020  | 0.016  |  |  |  |  |
| Mean R-Square      | 94.3   | 94.3   | 95.7   | 96.3   | 96.1   |  |  |  |  |
| N=                 | 75     | 75     | 75     | 75     | 75     |  |  |  |  |

## Panel C. Trading Volume

\_

| Volume             |        |        |        |        |        |  |  |  |  |  |
|--------------------|--------|--------|--------|--------|--------|--|--|--|--|--|
| Number of Stocks   | 50     | 100    | 200    | 500    | 1,000  |  |  |  |  |  |
| Mean Coefficient   | -1.937 | -1.804 | -1.667 | -1.463 | -1.243 |  |  |  |  |  |
| Standard Deviation | 0.308  | 0.202  | 0.111  | 0.054  | 0.060  |  |  |  |  |  |
| Mean R-Square      | 96.9   | 97.9   | 98.3   | 98.3   | 97.2   |  |  |  |  |  |
| N=                 | 75     | 75     | 75     | 75     | 75     |  |  |  |  |  |

## Table 5

This table presents own and pairwise correlations for the five different sets of stocks examined. In Panel A *Frequency* is the average number of stocks in month t+1 that were in the sample in month t. *Rank correlation* is the correlation between the rank of stocks in month t, and the rank of stocks in month t+1. Panel B presents similar statistics for pairwise comparisons.

## Panel A. Average time-series correlations

|        | Size      |         |             | Attention |         |             | Volume    |         |             |
|--------|-----------|---------|-------------|-----------|---------|-------------|-----------|---------|-------------|
|        |           |         |             |           |         |             |           |         |             |
|        |           |         | Rank        |           |         | Rank        |           |         | Rank        |
| Stocks | Frequency | Percent | Correlation | Frequency | Percent | Correlation | Frequency | Percent | Correlation |
|        |           |         |             |           |         |             |           |         |             |
| 50     | 48.21     | 96.42%  | 0.989       | 30.77     | 61.54%  | 0.670       | 40.19     | 80.38%  | 0.790       |
| 100    | 97.34     | 97.34%  | 0.983       | 61.28     | 61.28%  | 0.607       | 81.92     | 81.92%  | 0.813       |
| 200    | 194.45    | 97.23%  | 0.991       | 120.95    | 60.48%  | 0.595       | 165.83    | 82.92%  | 0.831       |
| 500    | 488.57    | 97.71%  | 0.993       | 308.23    | 61.65%  | 0.576       | 425.67    | 85.13%  | 0.841       |
| 1,000  | 977.42    | 97.74%  | 0.994       | 650.43    | 65.04%  | 0.559       | 878.43    | 87.84%  | 0.863       |

## Panel B: Average cross-sectional correlations

|        | Size-Attention A |         |             | Atte      | Attention-Volume |             | S         | Size-Volume |             |
|--------|------------------|---------|-------------|-----------|------------------|-------------|-----------|-------------|-------------|
|        |                  |         |             |           |                  |             |           |             |             |
|        |                  |         | Rank        |           |                  | Rank        |           |             | Rank        |
| Stocks | Frequency        | Percent | Correlation | Frequency | Percent          | Correlation | Frequency | Percent     | Correlation |
|        |                  |         |             |           |                  |             |           |             |             |
| 50     | 16.92            | 33.84%  | 0.081       | 17.99     | 35.98%           | 0.248       | 18.37     | 36.74%      | 0.252       |
| 100    | 35.96            | 35.96%  | 0.343       | 38.01     | 38.01%           | 0.320       | 38.73     | 38.73%      | 0.339       |
| 200    | 81.23            | 40.62%  | 0.333       | 75.89     | 37.95%           | 0.351       | 86.45     | 43.23%      | 0.328       |
| 500    | 276.41           | 55.28%  | 0.312       | 228.51    | 45.70%           | 0.372       | 262.08    | 52.42%      | 0.333       |
| 1,000  | 650.61           | 65.06%  | 0.377       | 531.23    | 53.12%           | 0.353       | 625.16    | 62.52%      | 0.368       |

#### **Table 6. Regression summary statistics**

*Market Cap* is the value of equity in \$Millions. *News* is the number of RavenPack news articles in a month. *Sentiment* is the average Ravenpack sentiment for the news articles in that month. *AbnVol* is abnormal volume measured as month *t* trading volume (in 1,000s) relative to the average over the previous 3 months. *Coverage* is the number of analysts that cover the firm, *Ivol* is the idiosyncratic volatility in month *t*. *BtM* is the book-to-market ratio, negative book values are set to 0. *Deviation* is calculated as Market Cap rank less Stocktwits rank in a month. *Advertise* is the percentage of firm sales spent on advertising. *Tech* is a dummy variable set to 1 for SIC codes whose first three digits are 737. *Pharm* is a dummy variable set to 1 for SIC codes whose first three digits are 283.

|                      | Mean  | Std Dev. | Median | Min     | Max     |
|----------------------|-------|----------|--------|---------|---------|
| Market Cap<br>(\$MM) | 8,033 | 2,634    | 1,338  | 0.85    | 75,071  |
| News                 | 36.6  | 86.9     | 19.0   | 0       | 3,792   |
| Sentiment            | 0.04  | 0.10     | 0.0012 | -0.86   | 0.88    |
| AbnVol (000s)        | 2.95  | 425.3    | -0.87  | -63,096 | 56,009  |
| Coverage             | 9.3   | 7.24     | 7      | 0       | 56      |
| Ivol                 | 0.025 | 0.026    | 0.018  | 0.004   | 1.42    |
| BtM                  | 0.44  | 0.76     | 0.31   | 0       | 80.8    |
| Returns %            | 1.07  | 12.99    | 0.94   | -93.53  | 1598.44 |
| Advertise            | 0.013 | 0.185    | 0      | 0       | 18.75   |
| Tech                 | 0.073 | -        | -      | -       | -       |
| Pharm                | 0.089 | -        | -      | -       | -       |

#### **Table 7. Determinants of Attention**

The dependent variables in these regressions in the log of posts in a month, the Stocktwits post rank in a month, and the standardized *Deviation* of the *Stocktwits rank* from the market capitalization weight. All variables are defined in the Table 6 column header except for Ret > 20% and Ret < 20%. These variables are two threshold dummy variables set to 1 if the monthly return is greater than the 20% threshold value. T-statistics are presented in parentheses below the coefficient estimate.

|              | (1)       | (2)       | (3)        | (4)       |
|--------------|-----------|-----------|------------|-----------|
| Variable     | Log Posts | Log Posts | Stocktwits | Deviation |
|              |           |           | Rank       | (std.)    |
| Ln (Mkt Cap) | 0.255     | 0.261     | -97.9      | -0.382    |
|              | (20.67)   | (21.60)   | (-11.77)   | (-51.78)  |
| Lag Return   | 0.469     | 0.47      | -295       | 0.212     |
|              | (8.72)    | (8.91)    | (-26.00)   | (24.54)   |
| Ret (+)      | 0.236     | -0.373    | -5.06      | 0.004     |
|              | (1.54)    | (-2.85)   | (-0.09)    | (0.09)    |
| Ret (-)      | -1.05     | -0.83     | -56.5      | 0.041     |
|              | (-6.62)   | (-4.43)   | (-1.33)    | (1.41)    |
| Ret > 20%    |           | 0.504     | -185       | 0.142     |
|              |           | (10.73)   | (-10.02)   | (9.58)    |
| Ret < -20%   |           | 0.117     | -82.5      | 0.076     |
|              |           | (2.82)    | (-7.61)    | (8.60)    |
| News         | 0.003     | 0.003     | -0.436     | 0.0004    |
|              | (26.76)   | (26.94)   | (-5.08)    | (4.77)    |
| Sentiment    | 0.230     | 0.221     | -127       | 0.072     |
|              | (5.52)    | (5.36)    | (-7.59)    | (5.44)    |
| AbnVol       | 0.00001   | 0.00001   | -0.024     | 0.0001    |
|              | (1.05)    | (0.77)    | (-2.50)    | (2.54)    |
| Coverage     | 0.45      | 0.45      | -70.1      | 0.028     |
|              | (29.98)   | (30.47)   | (-6.13)    | (4.68)    |
| Ivol         | 18.95     | 18.95     | -5646      | 4.57      |
|              | (19.09)   | (19.87)   | (-19.33)   | (18.87)   |
| BtM          | -0.063    | -0.062    | -27.9      | 0.017     |
|              | (-8.15)   | (-8.09)   | (-3.89)    | (2.6)     |
| Advertise    | 0.053     | 0.053     | -2.97      | -0.008    |
|              | (2.61)    | (2.65)    | (-0.28)    | (-0.09)   |
| Announce     | 0.169     | 0.165     | -125       | 0.105     |
|              | (5.7)     | (5.53)    | (-27.74)   | (27.54)   |
| Tech         | 0.062     | 0.062     | -280       | 0.182     |
|              | (3.44)    | (3.42)    | (-3.37)    | (7.39)    |
| Pharm        | 0.507     | 0.493     | 116        | -0.098    |
|              | (16.71)   | (16.61)   | (3.37)     | (-3.69)   |
| Month FE     | Y         | Y         | Ν          | Ν         |
| Stock FE     | N         | N         | Y          | Y         |
| Winsorized   | Ν         | Ν         | Ν          | Ν         |
|              |           |           |            |           |
| R-square     | 19.9      | 20.2      | 23.4       | 60.6      |
| Ν            | 187,870   | 187,870   | 187,870    | 187,870   |

#### **Table 8. Deviation and future returns**

This table presents average coefficients and cross-sectional t-statistics from Fama-MacBeth regressions of returns in month t+1 against *Deviation*, and stock characteristics. *Deviation* is the standardized difference between Market Cap rank and Stocktwits rank, so that a positive Deviation indicates a popular stock relative to its market weight. *Deviation* (+) contains only positive *Deviation* values, and *Deviation* (-) is analogous. *Ret1* is the stock return in month t-1, and *Ret2-3* is the stock return in months t-2 to t-3. *Ret4-6*, and *Ret7-12* are past returns over the specified months. Columns (1)-(3) present unfiltered returns. Columns (4)-(6) winsorize returns at the 1% and 99% levels. T-statistics are presented in parentheses below the coefficient estimate.

| Panel A. Fama-MacBeth | regression | coefficients |
|-----------------------|------------|--------------|
|-----------------------|------------|--------------|

|               | (1)     | (2)     | ('3)    | (4)     | (5)     | (6)     |
|---------------|---------|---------|---------|---------|---------|---------|
| Variable      |         |         |         |         |         |         |
|               |         |         |         |         |         |         |
| Constant      | 0.0130  | 0.0167  | -0.0168 | -0.0099 | 0.0011  | 0.0506  |
|               | (1.14)  | (1.26)  | (-1.11) | (-0.89) | (0.08)  | (-4.04) |
| Deviation     | -0.0044 |         |         | -0.0056 |         |         |
| (std.)        | (-3.16) |         |         | (-4.48) |         |         |
| Deviation (+) |         | -0.0074 |         |         | -0.0106 |         |
|               |         | (-3.25) |         |         | (-5.40) |         |
| Deviation (-) |         |         | -0.002  |         |         | -0.0009 |
|               |         |         | (-1.22) |         |         | (-0.71) |
| Ln (Mkt Cap)  | -0.0005 | -0.0005 | 0.0009  | 0,0005  | 0.0002  | 0.0024  |
|               | (-1.07) | (0.83)  | (1.55)  | (-1.14) | (0.33)  | (5.09)  |
| BtM           | 0.0064  | 0.0064  | 0.0066  | 0.0061  | 0.0061  | 0.0063  |
|               | (6.11)  | (6.10)  | (6.18)  | (-7.17) | (7.14)  | (7.29)  |
| Ret1          | 0.0063  | 0.006   | 0.0059  | 0.0074  | 0.007   | 0.0071  |
|               | (0.87)  | (0.83)  | (0.80)  | (1.18)  | (1.12)  | (1.11)  |
| Ret2-3        | 0.002   | 0.0018  | 0.0018  | 0.0053  | 0.0049  | 0.0052  |
|               | (0.32)  | (0.31)  | (0.29)  | (1.04)  | (0.06)  | (1.01)  |
| Ret4-6        | 0.0067  | 0.0062  | 0.0074  | 0.0062  | 0.0055  | 0.0069  |
|               | (1.54)  | (1.40)  | (1.70)  | (1.62)  | (1.42)  | (1.81)  |
| Ret7-12       | 0.0064  | 0.0059  | 0.0067  | 0.0079  | 0.0072  | 0.0083  |
|               | (1.77)  | (1.65)  | (1.84)  | (2.43)  | (2.23)  | (2.53)  |
| Ν             | 75      | 75      | 75      | 75      | 75      | 75      |

#### **Panel B: Portfolio sorts**

| Deviation     | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10    |
|---------------|------|------|------|------|------|------|------|------|------|-------|
| Returns $t+1$ | 0.99 | 0.96 | 0.93 | 0.92 | 0.97 | 0.77 | 0.85 | 0.44 | 0.40 | -0.44 |
| Returns t     | 0.98 | 1.12 | 1.33 | 1.44 | 1.64 | 1.60 | 1.51 | 1.48 | 1.17 | 2.64  |