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Abstract
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1 Introduction

Although investors and academics have long studied the issue of whether stock market returns

are predictable, many historically important predictor candidates generate only weak evidence in

favor of predictability with marginal statistical significance and low in-sample predictive R2s. In a

seminal paper, Kandel and Stambaugh (1996) demonstrate that even this relatively weak statistical

evidence of predictability can still produce substantive economic effects. In particular, Bayesian

investors who consider return predictability evidence display large shifts in their optimal allocation

to stocks over time and accrue substantial utility gains. More recently, researchers have uncovered

new predictors that achieve strong statistical significance in return forecasting relative to their

historical peers. Extrapolating the conclusions from Kandel and Stambaugh (1996), these new

variables may promise very large economic gains for investors. Several of these predictor variables

do, however, display extreme time-series properties and strong relations with stock market volatility

that could cast doubt on their benefits to investors.

We find that the strength of statistical evidence for a forecasting variable does not fully describe

its potential value to investors, particularly among newer predictors. Variables that tend to take

extreme values in high-volatility periods, have low persistence, and/or follow distributions with fat

tails may provide relatively little value even if they successfully forecast market returns in predictive

regressions. Our findings complement those of Kandel and Stambaugh (1996) by showing that, while

statistically weak evidence can be economically important, the converse also holds true as strong

statistical performance may be accompanied by low economic value.

Our conclusions are drawn from an approach that builds on Kandel and Stambaugh’s (1996)

seminal framework. We consider predictability from the perspective of Bayesian investors who

learn about the dynamics of the market return and the predictor from a vector autoregression

model. Our model has three primary design features. First, we consider the effects of time-varying

volatility on the value of market return predictability. We specifically model returns and predictors

to have stochastic volatility, and we show several interesting interactions between volatility and

predictability. Second, we investigate the economic value of predictability for multi-period investors.

We demonstrate that longer investment horizons impact the perceived value of return predictability

evidence, particularly in settings with stochastic volatility and low persistence in the predictor.

Third, we implement an in-sample design that preserves the time-series properties of the predictor

variables and their relations to market volatility. Using this model, we study a broad set of 25

predictor variables, 14 from Goyal and Welch (2008) and 11 from more recent publications in top
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finance journals. This large set of predictors provides variation in predictor characteristics, and it

allows us to make generalizations about economic value across different predictor types.

Our initial tests on the dividend-price ratio provides a good illustration of Kandel and Stam-

baugh’s (1996) point that weak statistical evidence can translate into important economic effects.

The ordinary least squares (OLS) slope coefficient on this variable in a monthly forecasting regres-

sion has a p-value of just 0.30, and the regression R2 value is only 0.002. When the one-month,

constant-volatility investor studied by Kandel and Stambaugh (1996) forms beliefs based on in-

formation from the dividend-price ratio, she varies her allocation to stocks between 4% and 98%

during the 1927-2017 period and achieves a non-trivial utility gain of 0.24% per year in certainty

equivalent return (CER).

Within the one-month, constant-volatility framework, we demonstrate that many of the 25

predictors provide substantial economic value to investors. Among the 14 Goyal-Welch variables,

most of the CER gains are relatively modest, ranging from 0.03% per year for the dividend-earnings

ratio to 0.69% per year for net equity expansion. The 11 new predictors tend to produce large

economic benefits, however, with a range of annual CER gain from 0.55% for the nearness to Dow

historical high variable of Li and Yu (2012) to 4.37% for the variance risk premium of Bollerslev,

Tauchen, and Zhou (2009). Further, we find that OLS R2 provides a very good fit to CER gain

across predictors, such that this statistical metric provides a good indication of in-sample economic

value in the one-month, constant-volatility setting.

We proceed to study return predictability in the context of Bayesian investors who account for

time variation in stock market volatility. Stochastic volatility has two primary effects on return pre-

dictability evidence with a one-month horizon. First, a purely statistical effect changes inferences

about the statistical strength of a predictor. Specifically, an investor who believes in stochastic

volatility weights observations in the market return predictability regression based on their preci-

sion, such that the investor effectively downweights (upweights) information from high-volatility

(low-volatility) periods and more efficiently learns about the predictability relation. Inferences

about the strength of a predictor can thus differ across the constant-volatility and stochastic-

volatility settings. Second, stochastic volatility in market returns is also important for evaluating

the economic value of a predictor during the portfolio optimization stage. If a given predictor

tends to make extreme return forecasts that coincide with periods of pronounced market volatility,

the investor will tend to moderate her bets on stocks and assign a lower economic value to the

information in the predictor. We find evidence that both of these effects are at work across the

predictors.
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An investor forming beliefs about market returns while incorporating stochastic volatility pro-

duces different inferences about the value of predictors relative to the constant-volatility investor.

Considering time-varying volatility increases the utility gain from some predictors, as is the case

for the Treasury bill yield which has a CER gain of 1.18% per year with stochastic volatility ver-

sus only 0.35% with constant volatility. Alternatively, some predictors are less valuable under the

stochastic-volatility framework, such as the partial least squares aggregated book-to-market ratio

of Kelly and Pruitt (2013) with a CER gain of only 0.53% in this setting versus 3.38% in the

constant-volatility model. Overall, considering stochastic volatility increases perceived economic

value for 11 of the 25 predictors (including seven of the 14 Goyal-Welch predictors and four of

the 11 new predictors), whereas benefits fall for the remaining 14 variables. The most pronounced

positive differences occur for variables from Goyal and Welch (2008) related to interest rate levels.

Several of the new predictors, in contrast, tend to take extreme values during high market volatil-

ity periods which leads to lower utility gains. Looking across all 25 variables, the strong relation

between standard measures of in-sample statistical significance and CER gains observable in the

constant-volatility results is much less pronounced in the stochastic-volatility framework.

We also consider the effect of horizon on the value of return predictability evidence. The

dynamics of predictors and expected return forecasts are important considerations for those who

do not adjust their market positions at a high frequency. The utility gain for multi-period investors

from considering predictability evidence is likely to be lower when a given predictor variable is less

persistent because expected return quickly reverts to its mean as horizon increases. In addition to

this direct channel, we show an effect on the perceived risk of stocks that arises from uncertainty

about future expected return and is most pronounced when a predictor has low persistence and

stochastic volatility. Intuitively, the set of low-persistence, high-variance predictors can produce

extreme changes in expected market return over short time frames, such that placing a large bet

on a forecasted market return runs the risk that the conditional mean return will quickly shift

to oppose the bet. Past literature (e.g., Pástor and Stambaugh (2012) and Avramov, Cederburg,

and Lučivjanská (2018)) shows the long-horizon effects of uncertainty about future expected return

on risk from an investor’s perspective, and we add to this literature by demonstrating substantial

short-term effects for low-persistence predictors.

To analyze these effects, we study three-month Bayesian investors in either a constant-volatility

or a stochastic-volatility framework. We demonstrate that CER gains are often substantially less-

ened by increasing the horizon from one month to just three months. For example, the CER

gains in the constant-volatility setup for the variance risk premium are 4.37% per year with a one-
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month horizon and 1.00% per year with a three-month horizon. In our sample, each predictor with

monthly autocorrelation below 0.90 exhibits substantially less economic value at a three-month

horizon compared with a one-month horizon.

In sum, we find important interactions between many return predictors and realistic aspects of

market returns relating to stochastic volatility and holding period. While these mechanisms affect

each predictor differently, we note several tendencies across predictor variables. First, a broad

assessment across predictors indicates that OLS R2 is a good indication of economic value in the

one-month, constant-volatility case but is less meaningful in other, perhaps more realistic, frame-

works. In this sense, we find evidence that some predictors are statistically strong but economically

weak whereas other variables have weak statistical evidence with relatively high economic value.

Second, incorporating stochastic volatility tends to be more favorable to the traditional Goyal-

Welch variables compared with the new predictors. Third, the set of predictors that are not highly

persistent produce substantially lower utility gains even for multi-period investors with relatively

short three-month horizons. Fourth, although we are cautious of making sharp comparisons of CER

gains across predictors because they are calculated using different predictive return distributions,

there appears to be some tendency for CER gains to be lower in each alternative setting compared

with the one-month, constant-volatility framework.

Our investigation of return predictability considers the economic value of the in-sample statis-

tical evidence while considering realistic features of returns and predictors like stochastic volatility.

We note, however, that the design of our study is not particularly well-suited for weighing in on

the debate about whether a given variable is truly related to expected return. A variable could be

a statistically strong predictor of stock market returns, which provides valuable information about

how investors price assets in a rational expectations framework, while being economically weak in

our setting due to portfolio-choice considerations of Bayesian investors who do not condition on un-

observed parameters. As such, our results about the economic value of various predictor variables

complement the statistical evidence found in other studies to provide a more complete picture of

stock market return predictability using a given variable.

Our study fits within an important literature that investigates return predictability through

the lens of Bayesian investors. Kandel and Stambaugh (1996), Stambaugh (1999), Barberis (2000),

Cremers (2003), and Wachter and Warusawitharana (2009, 2015) study allocations between stocks

and a risk-free security based on market return predictability, as in our study. Avramov (2002,

2004) and Tu and Zhou (2010) investigate portfolio choice with multiple assets that have pre-

dictable returns. Related to these studies, Pástor and Stambaugh (2012), Avramov, Cederburg,
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and Lučivjanská (2018), and Carvalho, Lopes, and McCulloch (2018) consider long-horizon predic-

tive return variance from the perspective of Bayesian investors in settings with predictable market

returns.

Three papers that study return predictability from the perspective of Bayesian investors who

consider time-varying market volatility are more closely related to ours.1 Shanken and Tamayo

(2012) model returns with time-varying volatility and with expected return as a function of time-

varying volatility and payout yield. Johannes, Korteweg, and Polson (2014) examine the question

of whether real-time investors can benefit from information in payout yield and stochastic volatility.

While these studies also share the feature of incorporating stochastic volatility while considering

return predictability, our focus is different. We consider a broad set of predictors to understand the

economic value of predictability in an in-sample setting, and we find many of the most interesting

effects in predictors that are not closely related to payout yield. Finally, Pettenuzzo, Timmermann,

and Valkanov (2014) introduce stochastic volatility in market returns in the context of specifying a

constraint on the conditional market Sharpe ratio while estimating the predictive return regression.

The rest of the paper is organized as follows. Section 2 introduces the Bayesian investor’s

problem, the models for stock market returns, and our estimation procedures. Section 3 discusses

the data. Section 4 presents our main results on evaluating market return predictors in frameworks

that incorporate stochastic volatility and alternative investment horizons. Section 5 concludes.

2 Methodology

This section develops our approach to investigating the economic importance of the character-

istics of stock market return predictors. Section 2.1 introduces the Bayesian investor’s problem.

Section 2.2 describes models for returns that either do not or do incorporate return predictability

and stochastic volatility. Section 2.3 discusses estimation, and Section 2.4 lays out our approach

to measuring the economic value of the information contained in a given return predictor.

2.1 Bayesian Investor

We consider a Bayesian investor who chooses optimal allocations between the stock market and

a risk-free security. The investor has power utility over wealth,

U(WT+1) =
W 1−γ

T+1

1− γ
, (1)

1Fleming, Kirby, and Ostdiek (2001) and Fleming, Kirby, and Ostdiek (2003) consider the impact of time-varying
volatility on portfolio choice in the absence of predictability.
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where γ is the coefficient of relative risk aversion. Wealth at time T + 1 is given by

WT+1 = WT (Rf,T+1 + ωTRT+1) , (2)

where Rf,T+1 is the risk-free rate, RT+1 is the stock market return in excess of the risk-free rate,

and ωT is a portfolio allocation to stocks that is chosen at time T . In the base case, we consider

an investor with γ = 5 and a one-month investment horizon. We consider investors with longer

horizons in Section 4.2. Results corresponding to investors with γ = 2 or γ = 8 are available in the

Appendix, and inferences about return predictors are similar to the γ = 5 base case.

Investor i’s beliefs about stock market return dynamics are based on a model, Mi. The investor

maximizes expected utility by choosing an optimal allocation to stocks,

max
ωT

E[U(WT+1)|Mi, DT ], (3)

where the conditional expectation is taken with respect to the predictive distribution of excess

stock market returns,

p(RT+1|Mi, DT ) =

∫
p(RT+1|Mi, θ,DT )p(θ|Mi, DT )dθ, (4)

in which θ is the set of parameters in model Mi, DT denotes the time series of returns and state

variables in model Mi, and p(θ|Mi, DT ) is the posterior distribution of θ.

The predictive distribution of excess returns in equation (4) accounts for uncertainty about the

parameters in the return process, such that the conditional expectation in equation (3) integrates

over this uncertainty. This feature of the asset allocation problem for a Bayesian investor was

introduced by Klein and Bawa (1976), and it has the effect that parameter uncertainty increases

the riskiness of stocks from the investor’s perspective relative to an environment with known pa-

rameters. To illustrate this point, note that the predictive variance of the excess return is given

by

V ar(RT+1|Mi, DT ) = E[V ar(RT+1|Mi, θ,DT )|Mi, DT ] + V ar[E(RT+1|Mi, θ,DT )|Mi, DT ]. (5)

The first term is the expected return variance and the second term captures the effect on predictive

return variance of uncertainty about the conditional expected market return that exists because

the investor does not know the set of parameters θ. The predictive return distribution has higher
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variance when uncertainty about expected return is considered, and integrating over parameter

uncertainty also affects higher moments by producing fat tails in the predictive distribution. As

a result, a risk-averse Bayesian investor moderates her investment position relative to an investor

with the same preferences who conditions on parameter point estimates.

2.2 Return Process

We study the implications of stock return predictability, stochastic volatility in stock returns,

and the interaction of these two effects for Bayesian investors’ utility. As such, we specify four

alternative models that either do not or do carry these features: (i) no predictability with constant

volatility (NP-CV), (ii) predictability with constant volatility (P-CV), (iii) no predictability with

stochastic volatility (NP-SV), and (iv) predictability with stochastic volatility (P-SV). Given a

candidate predictor variable xt, the processes for the excess stock market return and the state

variable are given by

rt+1 = α+ βxt + εrt+1, (6)

xt+1 = αx + βxxt + εxt+1, (7)

where rt+1 is the log excess return. The models with no predictability (NP-CV and NP-SV) have

the restriction β = 0. Following much of the return predictability literature, the expected log

excess return is specified as a linear function of xt in models P-CV and P-SV. Finally, the predictor

variable follows a stationary AR(1) process such that −1 < βx < 1.

The error terms in equations (6) and (7) are conditionally normally distributed, but these

conditional distributions differ across the constant-volatility models and the stochastic-volatility

models. The errors for the constant-volatility models (NP-CV and P-CV) are distributed bivariate

normal,  εrt+1

εxt+1

 ∼ N(0,Σ), Σt+1 =

 σ2
r σrx

σrx σ2
x

 . (8)

The errors for the stochastic-volatility models (NP-SV and P-SV) follow the specification of Prim-

iceri (2005). In particular, εrt+1 and εxt+1 are conditionally normally distributed,

 εrt+1

εxt+1

 ∼ N(0,Σt+1), Σt+1 =

 σ2
r,t+1 σrx,t+1

σrx,t+1 σ2
x,t+1

 . (9)
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The conditional covariance matrix Σt+1 can be decomposed as

 1 0

at+1 1

Σt+1

 1 at+1

0 1

 =

 σ2
r,t+1 0

0 σ̃2
x,t+1

 , (10)

and the processes for the log standard deviations are

log(σr,t+1) = log(σr,t) + ηrt+1, (11)

log(σ̃x,t+1) = log(σ̃x,t) + ηvt+1, (12)

where  ηrt+1

ηvt+1

 ∼ N(0,Ω). (13)

Finally, the at+1 process is a random walk with normally distributed errors. This specification for

Σt+1 allows for time variation in the conditional volatilities of the return and the state variable as

well as time variation in the contemporaneous correlation between the errors.

2.3 Estimation

Each of the four models introduced in Section 2.2 is a restricted Bayesian vector autoregression

(BVAR), and we use methods from the literature to estimate each model. The NP-CV and P-CV

models are restricted BVARs with a constant covariance matrix Σ. We specify conjugate normal-

inverse-Wishart priors with prior parameters chosen to produce diffuse prior distributions. The NP-

SV and P-SV models are similar to the specification of the BVAR with time-varying parameters and

stochastic volatility in Primiceri (2005), but with constant parameters and parameter restrictions in

equations (6) and (7). We broadly follow Primiceri’s (2005) estimation approach, with the exception

of the estimation of regression parameters in equations (6) and (7).2 For these parameters, the setup

mirrors the constant-volatility models so we specify the same normal prior distribution as in the

NP-CV and P-CV cases. In each model, we condition on the initial predictor variable, x0, such

that our posteriors are derived based on conditional likelihoods. As such, our approach does not

account for potential Stambaugh (1999) bias in the predictive regression coefficient. Johnson (2018)

shows that Stambaugh (1999) bias is small for most of the predictors we consider, and we do not

believe that this feature of our research design is likely to affect the spirit of our findings about the
2Our estimation procedure incorporates the update to Primiceri (2005) that is shown by Del Negro and Primiceri

(2015).
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interactions between predictability and stochastic volatility.

We estimate the BVARs using Markov chain Monte Carlo (MCMC) approaches. We use the

full time series of data, DT , to estimate model parameters, such that our study is best viewed as

an examination of in-sample return predictability evidence. For each combination of model and

predictor, we run the MCMC chain for 110,000 draws and discard the first 10,000 as a burn-in

period. As such, we produce 100,000 draws from the posterior distribution for each model and

predictor combination. A full description of the MCMC chain and prior parameters is available in

the Appendix.

2.4 Economic Value of a Predictor

We examine Bayesian investors’ certainty equivalent returns (CERs) to quantify the economic

importance of return predictability and stochastic volatility. In particular, we evaluate the impact

of information from a predictor variable by comparing the CER for the optimal policy from a

model that includes the predictor with the CER that corresponds to the policy that would be

optimal under an otherwise similar model without predictability. For example, to discern the value

of return predictability in a setting with stochastic volatility, we compare the CER for the optimal

P-SV model with the CER that the P-SV investor assigns to the optimal policy for the NP-SV

model. In these cases, expected utility is taken with respect to the predictive return distribution

from the P-SV model, and the two CERs under comparison are based on the optimal portfolio

weights for the P-SV and NP-SV models to isolate the economic effect of the return predictability

signal when returns have stochastic volatility. Formally, investor i forms beliefs about the predictive

return distribution in equation (4) using model Mi. Investor i’s CER with the optimal policy under

model Mi denoted as ω∗
i,T ,

CERi = [(1− γ)E[U(WT (Rf,T+1 + ω∗
i,TRT+1))|Mi, DT ]]

1
1−γ , (14)

can be compared with investor i’s CER from adopting the optimal policy ω∗
j,T from an alternative

model Mj ,

CERi,j = [(1− γ)E[U(WT (Rf,T+1 + ω∗
j,TRT+1))|Mi, DT ]]

1
1−γ . (15)

The CER difference, ∆CERi,j = CERi−CERi,j , reflects the economic magnitude of the difference

between the optimal policies under models i and j from investor i’s perspective. This method of

measuring the economic value of information is used by Kandel and Stambaugh (1996), Pástor and

Stambaugh (2000), and Avramov (2004), among others.

9



We are particularly interested in time-series properties of the predictor variables and the corre-

sponding effects on the economic value of the predictors. Several of the predictor variables exhibit

extreme values and display interesting relations to stock market volatility. As such, our analysis

is designed to preserve much of the structure of the time series from the observed sample period

when we evaluate a given predictor. In particular, we examine CERs based on predictive return

distributions for each month t + 1 of the sample period that are generated based on the observed

level of the predictor variable xt and posterior draws of the parameters. This approach preserves

the observed time-series properties of xt. Further, with this design the models with stochastic

volatility maintain the time-series relation between xt and Σt+1 that is estimated from the data,

which is important for our goal of investigating the interactions between return predictability and

stochastic volatility.

Within this general structure, our approach to estimating CER differences has four steps:

1. We estimate a model using the full time series of data to produce 100,000 draws from the

posterior distribution as described in Section 2.3.

2. We produce 100,000 draws from the conditional predictive distribution of stock market excess

returns in equation (4) for each month in the sample period. Specifically, to draw returns

in month t + 1, we condition on the value of the predictor variable from month t, xt. We

then draw a random log excess return from the model in equation (6) conditional on the

parameters from a posterior draw. In the models with stochastic volatility (NP-SV and P-

SV), the posterior draw also includes a full time series of stochastic volatility of returns, such

that we condition on a draw of σ2
r,t+1. Finally, we convert the draws of log excess returns

to excess returns to produce a set of 100,000 draws from the predictive distribution, which

integrates over parameter uncertainty.

3. Given draws from a predictive return distribution, we find the portfolio weight that maximizes

average utility across the draws.3 We assume that the risk-free security pays a constant rate

of 2% per year. Because the conditional predictive distribution varies by month for all models

but NP-CV, we produce an optimal portfolio weight for each combination of model and month

except for the NP-CV model which has a constant optimal weight.
3Given that we do not constrain the investment in stocks between zero and one, there is some positive probability

of losses exceeding 100% of wealth for any model-month combination that produces an optimal weight outside of
these bounds. We assume that the worst possible investment return that can be realized is −90%, which solves the
theoretical and numerical problems associated with zero or negative wealth and could be motivated by the real-world
existence of bankruptcy laws that limit actual harm in the event of large losses and liabilities.
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4. We calculate the CER of the optimal weight and the CERs of weights that are optimal

under other models. To arrive at a single CER value for a time series of weights that spans

the sample period, we calculate the average utility across all months that is achieved by

following the policy and find the CER that provides equivalent utility. Finally, we annualize

by multiplying monthly CER differences by 12.

The design of our study reflects our focus on in-sample return predictability evidence. Specifi-

cally, our goal is to examine the correspondence between the strength of in-sample statistical evi-

dence and the economic value of a predictor while taking into account realistic features of returns

and investors. Using the predictive return distributions from the sample period while conditioning

on the full sample for estimation produces results for Bayesian investors that are directly com-

parable to in-sample statistical evidence from the predictive regressions that are common in the

literature. We purposefully abstract away from the potential difficulties in translating in-sample

performance into out-of-sample gains to maintain this direct comparison.

3 Data

Our empirical tests focus on forecasting log excess stock market returns using a variety of

predictor variables. Our proxy for the market portfolio is the Center for Research in Securities

Prices (CRSP) value-weighted index. We collect monthly time-series data on the excess market

return and the risk-free rate from Kenneth French’s website.4 The log excess market return is the

log return on the CRSP index less the log return on the risk-free asset.

We consider a wide range of forecasting variables from prior literature. We examine stock return

predictability at a monthly horizon, so we restrict the sample to predictors that are available at

a monthly frequency. We also require that each predictor variable has data availability through

December 2017. We provide a brief overview of the predictors below. Full details on variable

definitions, data sources, and construction methods are available in the Appendix.

We start with the 14 monthly predictor variables from Goyal and Welch (2008). This set of

predictors includes the dividend-price ratio (DP ), the dividend yield (DY ), the earnings-price ratio

(EP ), the dividend-earnings ratio (DE), stock market variance (SV AR), the book-to-market ratio

(BM), net equity expansion (NTIS), the Treasury bill yield (TBL), the long-term Treasury bond

yield (LTY ), the long-term Treasury bond return (LTR), the term spread (TMS), the default yield
4See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. We thank Kenneth French for making these data

available.
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spread (DFY ), the default return spread (DFR), and inflation (INFL). This group of forecasting

variables is widely used in the literature on stock market return predictability.

We augment the Goyal and Welch (2008) predictors with a second group of 11 forecasting vari-

ables introduced in more recent literature. We specifically search articles appearing in top finance

journals subsequent to the publication of Goyal and Welch (2008) and identify predictors with data

availability at a monthly frequency. This group includes Kelly and Pruitt’s (2013) partial least

squares aggregated book-to-market ratio (PLS), Cooper and Priestly’s (2009) output gap (GAP ),

Jones and Tuzel’s (2013) new orders-to-shipments of durable goods (NOS), Li and Yu’s (2012)

nearness to Dow historical high (DOW ), Kelly and Jiang’s (2014) tail risk (TAIL), Pollett and

Wilson’s (2010) average correlation (COR), Rapach, Ringgenberg, and Zhou’s (2016) short interest

index (SII), Huang and Kilic’s (2018) gold-to-platinum price ratio (GP ), Driesprong, Jacobsen,

and Maat’s (2008) oil price change (OIL), Bollerslev, Tauchen, and Zhou’s (2009) variance risk

premium (V RP ), and Bollerslev, Todorov, and Xu’s (2015) left jump tail variation (LJV ).

Table I reports summary statistics for the 25 predictor variables. Panel A presents the sample

period start date, mean, standard deviation, skewness, kurtosis, and monthly autocorrelation co-

efficient for each of the Goyal and Welch (2008) predictors, and Panel B shows the corresponding

statistics for the new predictors. The times series for the Goyal and Welch (2008) variables in Panel

A and the PLS variable in Panel B all begin in January 1927. Data for the other new predictors

cover shorter sample periods.

Table I highlights two properties of the predictors that are relevant for our subsequent analysis.

First, the empirical distributions for several of the forecasting variables are highly non-normal, as

indicated by the skewness and kurtosis statistics. In the standard univariate predictive regression

setting, non-normal forecasting variables directly imply that conditional expected stock returns are

also non-normal and tend to take on extreme values in a few sample months. Deviations from

normality are particularly acute for several of the new predictor variables. Both PLS and V RP ,

for example, are highly negatively skewed. These variables are positive return predictors, such

that negative skewness translates into extreme negative expected return forecasts for months in

which PLS and V RP take on their lowest values. The PLS and V RP predictors also exhibit fat

tails, with kurtosis measures of 32.48 and 56.17, respectively. Second, there is substantial variation

in measures of persistence across the predictors. Fifteen of the 25 forecasting variables in Table

I have monthly autocorrelation coefficients that exceed 0.95. Four predictors, in contrast, have

autocorrelation coefficients below 0.50 in magnitude. Autocorrelation is an important summary

measure because more highly persistent predictors tend to be more influential in settings that
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require multi-period return forecasts.

Table II presents results from standard univariate predictive regressions. We specifically regress

the log excess stock market return on the lagged value of each predictor. For each regression, the

table reports the OLS estimate of the slope coefficient, its corresponding two-tailed p-value with

heteroscedasticity-consistent standard errors, and the regression R2. For the Goyal and Welch

(2008) predictors in Panel A, the statistical evidence in favor of predictability tends to be modest.

Only four of the 14 variables are statistically significant return predictors at the 10% level, and

just one variable (DY ) is significant at the 5% level. The monthly R2 values tend to be small,

ranging from 0.000 to 0.006. As emphasized by Kandel and Stambaugh (1996), however, even weak

statistical evidence of predictable returns can have an economically large impact on asset allocation

decisions.

Panel B of Table II shows that the new predictors generate considerably stronger statistical

support for return predictability. Eight of the 11 variables are statistically significant at the 10%

level, and six remain significant at the 5% level. The regression R2s are also more impressive than

those in Panel A, with R2 values as high as 0.031 for PLS and 0.049 for V RP . Based on the

analysis in Kandel and Stambaugh (1996), these results suggests that many of the new predictors

should be of considerable economic value to investors making asset allocation decisions. At the same

time, however, the non-normal distributions for these variables and some of their other time-series

properties may limit their value in portfolio applications.

4 Results

In this section, we examine the market return predictors from the perspective of Bayesian

investors who each believe in one of the models introduced in Section 2. We begin our analysis

by focusing on the economic value of the dividend-price ratio (DP ) predictor in a setting that

closely matches that of Kandel and Stambaugh (1996) to illustrate their findings that even weak

statistical evidence of return predictability may be economically important. As shown in Table II,

DP qualifies as a statistically weak predictor with a p-value of 0.295 for the OLS predictability

coefficient and a monthly predictive regression R2 of 0.002. To maintain consistency with Kandel

and Stambaugh (1996), we examine DP from the perspective of an investor who believes that stock

market volatility is constant.

Figure 1 shows properties of the predictive return distribution and optimal portfolio weights in

the constant-volatility framework. The top panel shows quantiles of the predictive return distribu-
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tion from the P-CV model. The model produces a predictive return distribution for each month in

the sample period conditional on the value of DP , and the figure plots the median (solid line) and

25th and 75th percentiles (dashed lines) of the distribution. The bottom panel shows the difference

between the optimal portfolio weight under the P-CV model and the optimal weight for the NP-CV

model. As such, this weight difference isolates the effect of incorporating information from the DP

predictor variable on the optimal portfolio weight.

The results in Figure 1 illustrate that even statistically weak evidence of return predictability can

have a large effect on the optimal portfolio weight of a Bayesian investor who considers predictable

returns. The optimal portfolio weight in stocks for the NP-CV model is 46% and constant across

periods (because returns have constant moments). An investor who believes in the P-CV model

with the DP predictor varies her weight in stocks between 4% (September 2000) and 98% (July

1932) during the sample period. Despite the weak evidence of predictability, the location of the

predictive return distribution shifts over time from the perspective of the P-CV investor as she

optimally considers information from the predictor rather than rejecting it based on a statistical

test.

To measure the economic value of the DP predictor for the P-CV investor, we calculate the

difference between the investor’s CERs under the optimal weights for the P-CV and NP-CV mod-

els. This annualized CER difference is 0.24%, which represents the utility gain from considering

information in the DP variable. This finding is consistent with Kandel and Stambaugh’s (1996)

conclusion that even a predictor with statistically weak evidence can still provide economic value.

Table III reports the full set of CER differences across predictors, models, and horizons. Panel

A shows results for the Goyal-Welch predictors and Panel B contains corresponding results for the

new predictors. For each predictor, we report four CER differences that measure the economic

value of the predictor variable under a specific model-horizon combination. The constant volatility

cases report CER differences for the P-CV investor who compares weights from the P-CV and

NP-CV models for a given horizon, and the stochastic volatility cases are from the perspective of

the P-SV investor who considers the P-SV and NP-SV model weights. We report annualized CER

differences for one-month and three-month investment horizons.

Beginning with the one-month, constant-volatility CER differences, the results indicate sub-

stantial variation in economic value across predictors. The CER differences for the Goyal-Welch

predictors in Panel A of Table III range from 0.03% (DE) to 0.69% (NTIS) per year. Many of the

new predictors in Panel B have larger CER differences, consistent with the tendency of stronger

statistical evidence for these predictors from the OLS regressions in Table II. The smallest CER
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difference is 0.55% (DOW ) and the largest is 4.37% (V RP ) per year. Among the 11 new predictors,

CER differences that exceed 1.00% per year are achieved by seven predictors: PLS, GAP , NOS,

TAIL, GP , V RP , and LJV . These findings indicate that the new predictors have considerable

economic value to investors who believe in the constant-volatility framework studied by Kandel

and Stambaugh (1996).

Comparisons of these initial CER differences with those from the remaining cases in Table III

demonstrate that the economic value of a given predictor can differ substantially depending on

the investor’s model and horizon. Focusing on extreme examples with a one-month horizon, the

CER difference for the inflation predictor variable (INFL) is 0.16% for the P-CV investor and

1.34% for the P-SV investor, whereas the CER difference for the PLS variable is 3.38% for P-CV

versus only 0.53% for P-SV. These cases illustrate that considering stochastic volatility can either

increase or decrease the economic value of a predictor variable. Overall, the CER difference is

larger under stochastic volatility compared with constant volatility for seven of the 14 Goyal-Welch

predictors and four of the 11 new predictors. Considering different horizons within the constant-

volatility framework shows that the value of many of the predictors is similar for one-month and

three-month horizons (e.g., 0.24% per year for DP for each horizon) but substantially lower for a

few predictors (e.g., 4.37% for V RP at a one-month horizon and 1.00% at a three-month horizon).

Figure 2 provides a visual illustration of the CER differences across the various predictors and

cases. The figure contains four panels with scatterplots of CER differences compared to the OLS

R2 from Table II for each predictor. The top-left panel shows CER differences for the P-CV

investor with a one-month horizon. The plot demonstrates that OLS R2 is a very good indicator of

the economic value of a given predictor in the one-month, constant-volatility setup considered by

Kandel and Stambaugh (1996). This finding reinforces that our test design is congruent with our

goal of examining the in-sample economic value of predictors, as there is a close correspondence

between CER differences and in-sample OLS R2. The two predictors that visually deviate the

most from a linear relation between OLS R2 and CER difference across the predictors are V RP

and LJV , which are the two predictors with the shortest sample periods (V RP and LJV data

begin in January 1990 and June 1996, respectively). Given the relatively short sample periods, the

predictive return distributions for these predictors have somewhat fatter tails compared with the

distributions for other predictors, which reduces their economic value. Nonetheless, there is a clear

connection between the strength of statistical evidence and the economic value of a predictor in

the Kandel and Stambaugh (1996) setup.

The remaining plots in Figure 2 demonstrate that OLS R2 provides a murkier indication of eco-
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nomic value for investors who consider stochastic volatility or who have longer investment horizons.

In each of these panels, CER differences are somewhat positively related to OLS R2, but there are

clear exceptions of predictors that are statistically strong and economically weak or economically

strong and statistically weak (according to OLS). These results indicate that the economic value

of a predictor to investors may not be fully captured by the strength of statistical evidence from

OLS.

In the remainder of this section, we further investigate the economic mechanisms that produce

differences in the perceived economic value of a predictor across investor types. Section 4.1 discusses

the effects of incorporating stochastic volatility into the model when evaluating a predictor vari-

able. Section 4.2 demonstrates the impact of investor horizon on the value of return predictability

evidence.

4.1 Return Predictability with Stochastic Volatility

The results in Table III show that information from the same predictor variable can have sub-

stantially different degrees of economic value for investors in the constant-volatility and stochastic-

volatility frameworks. In this section, we discuss two mechanisms that contribute to these differ-

ences. First, a purely statistical effect captures how Bayesian investors learn about market return

predictability. The P-SV investor considers conditional volatility while weighing information from

the sample and may, therefore, arrive at different conclusions about the statistical evidence of mar-

ket return predictability for a given predictor variable compared with the P-CV investor. Second,

given information from a predictor variable about the conditional expected market return, the

P-SV investor will also consider information about the conditional market variance while making

her portfolio decision. To the extent that the timing of extreme expected return predictions corre-

sponds to periods of high market volatility, the P-SV investor may optimally choose to moderate

her bets on stocks relative to the P-CV investor who believes in constant market variance.

Accounting for time variation in stock market variance can affect inferences about market

return predictability. Bayesian investors who believe in constant market volatility effectively weight

squared residuals equally across periods, similar to OLS regression in the frequentist framework.

In contrast, Bayesian investors who believe in stochastic volatility will weight information from

each month according to its precision. That is, if a very high market return occurs with a high

value of the predictor variable during a high-volatility period, OLS treats the observation as strong

evidence for a positive predictive relation whereas a Bayesian stochastic-volatility investor may

attribute much of the high return to a positive realization of the high-variance residual rather than
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to a high expected return. In this sense, the P-SV investor estimates the predictive regression in a

similar fashion to a frequentist WLS approach that weights observations by the inverse of estimated

conditional market return variance (see Johnson (2018) for an application of WLS to market return

predictability).

The effect of time-varying volatility on learning about a predictor variable depends on whether

the strength of its predictability evidence is concentrated in high- or low-volatility periods. De-

pending on the relation, the posterior mean of the predictive regression coefficient β could increase

or decrease in magnitude in the stochastic-volatility model relative to the constant-volatility model.

Assuming that predictability evidence is unrelated to market return variance, weighting observa-

tions by their precision also improves the efficiency of estimating β. As such, accounting for time

variation in return variance while estimating the return predictability relation can affect both the

location and the scale of the posterior distribution of β.

Figure 3 shows posterior distributions of predictive regression coefficients that relate log excess

stock market return to lagged predictor variables following equation (6). Panel A shows posteri-

ors for the Goyal-Welch predictors and Panel B reports results for the new predictors. For each

predictor, we show a box-and-whiskers plot for the posterior distribution of β for both the P-CV

and P-SV models. In each box-and-whiskers plot, the red line shows the posterior median, the box

represents a 50% credible interval, and the whiskers span a 95% credible interval. We provide a

dotted line at zero in each plot for convenience of determining whether zero falls within a credible

interval.

The posteriors in Figure 3 indicate that investor beliefs about the strength of return predictabil-

ity for a given predictor often vary across the P-CV and P-SV investors. In Panel A, the posterior

medians noticeably shift toward zero for the DY , EP , BM , NTIS, TMS, and DFR predictors.

As a specific example, the posterior median for DY under the P-SV model is about 58% of the

magnitude of the median for the P-CV model, such that the magnitude of variation in conditional

expected return forecasts is about two-fifths lower when learning about predictability while con-

sidering stochastic volatility. In contrast, variables related to interest rate levels including TBL,

LTY , LTR, and INFL appear to better forecast returns with stochastic volatility. The INFL

variable, for which the CER difference is much larger for the P-SV investor compared with the

P-CV investor in Table III, has posterior medians of −0.36 and −0.98 for the P-CV and P-SV

models, respectively. The new predictors in Panel B also show effects, as the posteriors under the

P-SV model are centered noticeably closer to zero for the PLS, GAP , TAIL, SII, GP , and LJV

predictors. Evidence of market predictability with the OIL variable is somewhat stronger after
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considering stochastic volatility.

Changes in inferences about market return predictability have clear implications for the eco-

nomic value of a given predictor. A shift in the posterior distribution of the predictive regression

coefficient directly affects the conditional expected market return in each period. Further, to

the extent that the posterior is less (more) diffuse under the P-SV model compared with the P-

CV model, the predictive return distribution is also less (more) diffuse. In particular, equation

(5) shows that reducing uncertainty about β has the effect of lowering predictive return vari-

ance by decreasing the estimation risk component of variance from uncertainty about expected

return, V ar[E(RT+1|Mi, θ,DT )|Mi, DT ]. Thus, the degree of certainty about the market return

predictability relation has a direct impact on the perceived risk of investing in stocks from the

perspective of a Bayesian investor.

The second effect of stochastic volatility on the Bayesian investor’s problem is that the investor

must consider the conditional risk of investing in stocks when determining whether (and how much

to) bet on a view about expected market return. The impact of this issue depends on the relation

between the conditional expected market return and the conditional volatility of market return.

To the extent that a predictor variable produces a few extreme values of conditional expected

market return that correspond to periods with high market volatility, the investor is likely to adopt

moderate investment positions and associate a relatively low economic value with the predictor.

To illustrate these effects, we more closely examine the PLS predictor variable. Table III shows

that the P-CV investor has a CER difference of 3.38% for this variable, whereas the P-SV investor’s

CER difference is only 0.53%. A portion of this decline in economic value of PLS is attributable to

a shift in the investor’s views about the statistical evidence of return predictability that is apparent

in Figure 3. The posterior median of the predictive regression coefficient is 0.028 for the P-CV

model compared with 0.016 for the P-SV model. Moreover, uncertainty about β is higher in the P-

SV model with a posterior standard deviation of 0.007 versus 0.005 for the P-CV model, such that

the perceived riskiness of stocks is somewhat higher under the P-SV model. Nonetheless, statistical

evidence that PLS positively forecasts market returns remains strong in the P-SV model and over

98% of posterior draws of β are positive.

The more important effect of stochastic volatility on the economic value of PLS is in the

portfolio decision step. Figure 4 illustrates the relation between the predictor variable and the

conditional variance of market returns. The top panel plots the time series of PLS and the bottom

panel shows the time series of the annualized standard deviation of market returns implied by the

posterior mean of the stochastic volatility process. Consistent with past empirical work, market
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volatility is highly time varying with large spikes that generally correspond to times of economic

uncertainty. Volatility peaked during the Great Depression, with the annualized standard deviation

reaching as high as 55%. This period of extreme market volatility corresponds closely with the most

extreme values of PLS. In particular, 90% of PLS observations fall within the range of −1.30 to

−0.45, but the variable drops as low as −3.44 during the market volatility spike in the early 1930s.

The strong relation between PLS and market volatility is likely to affect its economic value in

making portfolio decisions.

Figure 5 shows predictive return distributions and weight differences for the P-CV and P-SV

investors who consider PLS. The top panels show the median (solid line) and 25th and 75th

percentiles (dashed lines) of the predictive return distribution from a given model. The bottom

panel on the left (right) plots the difference between the optimal portfolio weight under the P-CV

(P-SV) model and the optimal weight for the NP-CV (NP-SV) model. The weight differences

represent the effect of information from PLS on the optimal portfolio weight.

The results in Figure 5 demonstrate stark differences in the predictive return distribution and

optimal portfolio weights across the constant-volatility and stochastic-volatility cases. Beginning

with the P-CV model, the median of the predictive return distribution varies substantially over

the sample period with the largest shift occurring in the early 1930s. In the month with the lowest

conditional return forecast (January 1932), the median of the predictive return distribution is

−6.72% and 90% of return draws from the predictive distribution are negative. The P-CV investor

thus concludes that the stock market return is highly likely to be large and negative, and she uses

this predictive distribution to calculate an optimal weight of −392% in stocks (relative to a weight of

46% for the NP-CV investor).5 After the portfolio weight stabilizes in the early 1940s, the investor

continues to shift her investment position with weight differences as low as −45% (March 2000)

and as high as 84% (September 1960), but the lion’s share of the investor’s response to information

in PLS occurs early in the sample.

The investor who believes in the P-SV model responds to PLS quite differently compared with

the P-CV investor. In January 1932, the median of this investor’s predictive return distribution

reaches a low of −3.57%. However, given that this period corresponds to a time of high market

volatility, the standard deviation of monthly return from the predictive distribution is 13.69% and

the investor believes there is a 39% chance that the market return will be positive. Thus, despite

the large, negative expected return forecast, the P-SV investor adopts a relatively modest portfolio
5It is notable that the investor’s weights in stocks were −75% and −78% in July and August 1932 when the

monthly stock market excess returns were 34% and 37%, suggesting the weights of around −400% in stocks during
the first half of 1932 produced substantial risk of financial ruin.
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weight of −25% in stocks compared with a weight of 18% for the NP-SV investor during the

same month. Under less volatile market conditions, the P-SV investor often responds similarly to

information in PLS compared with the P-CV investor. For example, weight differences of −30% in

March 2000 and 66% in September 1960 are similar in magnitude to those reported above for the

constant-volatility investor. Overall, however, the P-SV investor makes fewer large bets based on

PLS during the sample period. The investor’s muted response to the predictor variable accounts

for the relatively low CER difference of 0.53% under stochastic volatility compared with 3.38% for

constant volatility.

Discussion

The case of the PLS predictor shows that the presence of stochastic volatility can have a

substantial impact on the perceived economic value of predictability evidence. The economic value

of PLS is lower with stochastic volatility because (i) the estimated variation in expected return is

lower because the predictability coefficient is shifted toward zero, (ii) uncertainty about expected

return is higher because the posterior of the predictability coefficient is more diffuse, and (iii) periods

with more extreme expected return forecasts tend to correspond to times of high market volatility.

This example is somewhat extreme because the predictor is affected in the same direction by each

of the three effects. We see several other cases in Table III in which considering stochastic volatility

either increases or decreases perceived economic value. In particular, the Goyal-Welch variables

related to interest rate levels along with the OIL variable have substantially higher value with

stochastic volatility, whereas there are notable declines in value for a few of the newer predictors

that bear a relation to market volatility including PLS, TAIL, V RP , and LJV . To diagnose

whether a new predictor is likely to be susceptible to these issues, we recommend considering both

OLS and WLS for estimating predictive relations to assess statistical evidence as well as visually

inspecting whether the expected return forecasts are closely related to estimated market return

volatility to gauge the potential impact on portfolio choice.

4.2 Return Predictability and Investor Horizon

We now consider the economic value of market return predictability from the perspective of

Bayesian investors with multi-period horizons. Specifically, we study buy-and-hold investors who

form beliefs about market returns based on one of the four models studied above (i.e., NP-CV,

P-CV, NP-SV, or P-SV) but who have three-month investment horizons. Studying predictability

from the perspective of multi-period investors has practical appeal since many investors do not

rebalance their portfolios on a monthly basis. Further, it is interesting in this setting because
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the joint dynamics of the market return and the predictor affect the predictive return distribution

at horizons longer than one month, so additional characteristics of predictors are considered by

longer-horizon investors.

Our investigation of multi-period Bayesian investors relates to several previous studies. Stam-

baugh (1999), Barberis (2000), and Avramov (2002) consider multi-period, buy-and-hold Bayesian

investors similar to our setup, and Johannes, Korteweg, and Polson (2014) and Hoevenaars, Mole-

naar, Schotman, and Steenkamp (2014) study investors who periodically rebalance their portfolios.6

A related literature, including studies by Pástor and Stambaugh (2012), Avramov, Cederburg, and

Lučivjanská (2018), and Carvalho, Lopes, and McCulloch (2018), investigates the long-horizon

predictive variance of stock market returns in the presence of market return predictability.

We largely focus on different issues about multi-period investment horizons compared with the

previous literature. Prior studies primarily focus on the dynamics of highly persistent predictor

variables, and they document important effects like mean reversion in returns using persistent

predictors and long investment horizons. Our broad sample of predictors contains several variables

with relatively low persistence, and we find that these low-persistence predictors produce interesting

dynamics and portfolio choice implications for multi-period investors. Even over a relatively short

horizon of three months, these predictors generate interesting patterns for expected return and risk,

and we focus much of our attention on these effects among low-persistence predictors.

We first describe our method for calculating optimal portfolio weights and CER differences

for three-month, buy-and-hold Bayesian investors. These investors maximize expected utility by

choosing a weight ωt to invest in stocks at the beginning of the three-month period. Expected

utility is calculated with respect to the predictive distribution of three-month, buy-and-hold excess

stock market returns. To generate three-month cumulative returns, we first note that the VAR

structure specified in equations (6) and (7) allows us to draw (r, x) pairs for periods t+1, t+2, and

t+3 based on the evolution of the state variable and the distribution of the log excess stock return

conditional on a value of the lagged state variable. Once we have draws of log excess returns rt+1,

rt+2, and rt+3, we convert them into excess returns and calculate the buy-and-hold excess return as

Rt,t+3 = (Rf,t+1+Rt+1)(Rf,t+2+Rt+2)(Rf,t+3+Rt+3)−Rf,t+1Rf,t+2Rf,t+3. The optimal portfolio

weight ωt maximizes average utility across 100,000 draws from the predictive distribution of three-

month buy-and-hold excess market returns.7 Finally, we calculate CER differences analogously to
6A related literature, discussed and contributed to by Campbell and Viceira (2002) and Wachter (2010), considers

optimal allocations by multi-period investors in the absence of estimation risk.
7We choose to study a relatively short three-month horizon because we are able to illustrate our main points

without encountering problems with the calculation of expected utility. Given that there is no closed-form solution
for the predictive return distribution, we estimate expected utility by calculating average utility across 100,000 draws.
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the one-month case and annualize by multiplying by four.

As previously mentioned, our analysis in this section largely concentrates on those predictors

that are relatively less persistent. To identify these predictors, Figure 6 shows posteriors of the

autoregression coefficient βx from equation (7) for each predictor variable. Panel A shows poste-

riors for the Goyal-Welch predictors and Panel B reports results for the new predictors. For each

predictor, we produce a box-and-whiskers plot for the posterior distribution of β for both the P-CV

and P-SV models. In each box-and-whiskers plot, the red line shows the posterior median, the box

represents a 50% credible interval, and the whiskers span a 95% credible interval.

The posteriors in Figure 6 show that most of the predictor variables are highly persistent with

autoregression coefficient posteriors that are concentrated near one. Perhaps unsurprisingly, the

persistent state variables tend to maintain relatively similar levels of economic value with a three-

month horizon as in the one-month case. Other variables, however, have lower levels of persistence.

The variables with a posterior median of βx below 0.90 in either the P-CV or P-SV models are

SV AR, LTR, DFR, and INFL among the Goyal-Welch predictors in Panel A and NOS, TAIL,

OIL, and V RP for the new predictors in Panel B. The CER differences in Table III for each of

these predictors are noticeably smaller for three-month investors compared with the corresponding

one-month investors. Specializing to the stochastic-volatility case, the three-month CER differences

are less than half of those at a one-month horizon for SV AR (0.11% for three-month versus 0.23%

for one-month), LTR (0.12% versus 0.82%), INFL (0.40% versus 1.34%), NOS (0.64% versus

1.50%), OIL (0.30% versus 1.13%), and V RP (1.31% versus 3.41%).

The effects of longer horizons on the economic value of low-persistence predictors work through

two primary channels. The first channel is a relatively straightforward effect on expected market

return of the three months in the holding period. Given a predictor with high persistence, the

investor’s expectation of market returns will also be highly persistent. For example, an investor

who observes a high value of DP in month t believes that the expected return in month t + 1 is

higher than usual. When forming expectations about market returns in months t + 2 and t + 3,

the investor anticipates that DP will remain high and therefore continues to expect relatively high

market returns throughout the holding period. In contrast, market return forecasts based on low-

persistence predictors quickly converge toward the long-run mean as the horizon increases. Thus,

when presented with evidence that the expected market return is high in month t+1, the investor

believes that the predictor does not contain much information about market returns in months

This approach is stable when there is a low probability of very large, negative returns that correspond to extremely
large negative utility. At long horizons, the probability of these large, negative events increases and the expected
utility estimation deteriorates. We find that the estimates with a three-month horizon are stable.
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t + 2 and t + 3. The investor is therefore likely to perceive less of an economic gain from the

low-persistence predictor when she has a longer horizon.

The second channel of persistence on the economic value of a predictor is the effect on risk.

As shown by Pástor and Stambaugh (2012), uncertainty about future expected returns has a

positive impact on predictive return variance from the perspective of a Bayesian investor. This

risk component arises because there is uncertainty about the evolution of expected return over

the investment horizon, and it is relatively small at short horizons such as three months when

predictors are highly persistent. For low-persistence predictors, however, we show that this effect

can be quite large even over short time frames. In particular, we formally demonstrate below that

low-persistence predictors tend to be highly volatile compared with high-persistence predictors. As

such, expected return can change a great deal from month to month as the predictor varies over

time. An investor who is investing for three months when the conditional expected return for the

next month is high must also acknowledge that the expected return could end up being quite low

in the second and third months of the holding period. Thus, longer-horizon bets on stocks using

low-persistence predictors are perceived to be risky from the perspective of the Bayesian investor.

We now demonstrate that low-persistence predictors tend to be volatile relative to high-persistence

predictors for a given level of market return predictability. The OLS R2 is a measure of the variance

of the fitted expected return as a proportion of return variance. Given the structure of the BVAR

in equations (6) and (7) with constant volatility, the unconditional variance of the fitted expected

excess log return is given by

V ar(E(rt+1|Mi, θ, xt)|Mi, θ) =
β2

1− βx
σ2
x. (16)

When βx is near one for a persistent predictor, the quantity 1/(1−βx) contributes substantially to

this quantity (e.g., 1/(1 − βx) = 100 when βx = 0.99, which is a common range for βx). For low-

persistence predictors, however, the quantity β2σ2
x must be relatively large to produce a non-trivial

OLS R2. This quantity also drives the contribution of uncertainty about future expected returns

to predictive return variance. Formally, uncertainty about future expected returns over a three-

month horizon is driven by uncertainty about the expected return in months two and three of the

holding period, and it is given by E(β2((1+βx)
2+1)σ2

x|Mi, DT ) (see the Appendix for derivation).

Relative to the unconditional variance of expected return given by equation (16), this quantity is

very small for high βx but large for low βx. Uncertainty about future expected returns can thus

contribute substantially to predictive return variance even over short horizons for predictors with
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low persistence. Moreover, the effects can be further amplified in the stochastic-volatility model

when σ2
x,t+1 is large.

To illustrate the potential effects of investment horizon on the economic value of a predictor

variable, we focus on the V RP predictor. The annualized CER difference for P-CV investors is

4.37% at a one-month horizon but only 1.00% at a three-month horizon. Similarly, the P-SV

investor with a one-month horizon has a CER difference of 3.41% compared with only 1.31% for

the three-month investor. This variable exhibits low persistence, substantial stochastic volatility in

the predictor process, and a tendency for extreme values within the sample period. Each of these

features works against the value of the variable for longer-term investors.

Figure 7 shows the V RP predictor variable along with the stochastic volatility processes for

returns and the state variable. The V RP variable displays a noticeable downward spike in October

2008, but we note that this observation post-dates the sample periods of the Bollerslev, Tauchen,

and Zhou (2009) and Drechsler and Yaron (2011) studies such that the initial evidence for V RP

in the literature is not driven by the outlier. Nonetheless, this observation contributes to a pattern

observed throughout the sample that the conditional volatility of V RP is highly variable. There is

also a tendency for spikes in the volatility of V RP to correspond with spikes in market volatility.

Figure 8 plots predictive return distributions and weight differences for one-month and three-

month horizons. Panel A (Panel B) shows results for the constant-volatility (stochastic-volatility)

models. The predictive return distribution plots report the median and 25th and 75th percentiles

of the distribution of one-month or three-month cumulative returns. The weight differences are the

difference between optimal weights for the P-CV and NP-CV models in Panel A and the P-SV and

NP-SV models in Panel B.

The one-month, constant-volatility results show that this investor aggressively shifts her port-

folio weights in response to information from V RP . The weight in stocks for the P-CV investor

ranges from −667% (November 2008) to 535% (September 1998) compared with the NP-CV weight

of 76%. The strong in-sample predictability evidence for V RP thus produces substantial shifts in

optimal weights and an economically large CER difference of 4.37% for V RP .

The optimal weights for the three-month P-CV investor are muted relative to the one-month

results. The weight in stocks varies between −272% and 288% during the sample period (the NP-

CV optimal weight is 75%). Further, the absolute magnitude of the weight difference is less than

20% for over half of months, reflecting the tendency of the highly kurtotic V RP to have many

moderate periods with a few large spikes. The most important impact of the longer horizon for this

investor is a lack of perceived persistence in V RP , reflected by the relatively low value of βx shown
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in Figure 6. The median posterior draw of βx is only 0.28, such that any variation in expected

return is seen to be quite short-lived and primarily affects only the first month of the holding

period. The more moderate positions taken by the three-month P-CV investor are reflected in the

relatively low CER difference of 1.00% (compared with 4.37% for the one-month investor).

The results in Panel B of Figure 8 for the stochastic-volatility cases also show large horizon

effects. The weight difference for the three-month P-SV investor is noticeably devoid of large

spikes, although there is some variation in optimal weights that produces a CER difference of

1.31%. The mechanism at work in the stochastic-volatility case is somewhat different from that

in the constant-volatility results. After considering stochastic volatility in returns and the state

variable, the investor perceives V RP to be more persistent with a posterior median βx of 0.63. An

unusually high expected market return at the one-month horizon is thus accompanied by relatively

high expected returns for the last two months of the holding period. However, the optimal portfolio

weights are still relatively moderate for the three-month P-SV investor because of effects of horizon

on beliefs about risk. In particular, investing for multi-period horizons becomes very risky from

the perspective of the Bayesian investor when the predictor variable takes extreme values and is

highly volatile. The investor thus moderates her positions and avoids taking large bets.

Figure 9 illustrates the effects of horizon on the riskiness of stocks given the NP-CV, P-CV,

NP-SV, and P-SV models with the V RP predictor. For each model, we plot the three-month

predictive variance ratio, which is calculated as the variance of the three-month predictive return

distribution divided by three times the variance of the one-month predictive return distribution.

As shown by Pástor and Stambaugh (2012) and Avramov, Cederburg, and Lučivjanská (2018),

predictive variance ratios can be pushed above one by uncertainty about future expected return and

estimation risk, whereas mean reversion can have a negative effect on predictive variance ratios. The

predictive variance ratios for V RP are nearly uniformly greater than one across models, suggesting

that uncertainty about future expected return and estimation risk are outweighing any effect of

mean reversion. The predictive variance ratios for the NP-CV and P-CV cases are relatively stable

and only slightly higher than one, such that these investors perceive roughly the same per-period

risk over a three-month horizon compared with a one-month horizon.

The more interesting effects in Figure 9 are for the stochastic-volatility models. The predictive

variance ratio for the NP-SV model exceeds that of the constant-volatility cases because of the

well-known effect that stochastic volatility in returns produces fatter tails and higher variance in

multi-period returns. Relative to the NP-SV model, the P-SV model produces several large spikes in

the predictive variance ratio. Each of these spikes corresponds to a relatively high level of stochastic
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volatility in V RP observable in Figure 7. In these cases, the expected market returns in months

two and three of the holding period are particularly uncertain given the high conditional volatility

of the predictor variable. Uncertainty about future expected return is quite high in these times,

which can have a substantial impact on the riskiness of stocks from the investor’s perspective. The

largest predictive variance ratio spike reaches over three in November 2008, which means that the

predictive return variance at a three-month horizon exceeded nine times the predictive variance

of one-month returns.8 The three-month investor is understandably cautious with her portfolio

decisions in this period despite the relatively large negative expected three-month return.

Discussion

The V RP predictor results show that multi-period horizons can impact the economic value of

a predictor. Among the new forecasting variables, we also see large declines in economic value for

the NOS and OIL variables. The horizon effects for these predictors are caused both by investor

beliefs about the persistence of expected return and by additional risk from the perspective of the

investor. The impact on expected return in future periods is relatively obvious and easy to diagnose

with an autoregression coefficient. Less persistent variables will be less valuable to multi-period

investors because of the low persistence of expected return. The risk channel is somewhat more

subtle, since it arises from the investor’s beliefs that a predictor and the implied conditional mean

return could swing wildly from month to month. Predictor variables with low persistence that also

display substantial time variation in stochastic volatility will tend to produce the largest effects

on perceived risk over multi-period horizons. This type of variable will tend to have high kurtosis

because of these time-series dynamics (e.g., the kurtosis of V RP is 56.17 as reported in Table I),

which can be used to diagnose whether the effects of horizon on risk are likely to be important.

5 Conclusion

We evaluate the economic value of stock market return predictors from the perspective of

Bayesian investors while accounting for realistic features of the data and investors. In the classic

one-month, constant-volatility setting, OLS R2 from a predictive return regression is a strong

indicator of economic value, and even weak statistical evidence can produce non-trivial economic

gains. With a one-month horizon, we show that stochastic volatility in returns has a large impact

on the economic value of many predictors through both statistical and portfolio choice channels.
8Note that higher-order moments are also affected by the same channels. For example, the kurtosis of the three-

month predictive return distribution for the P-SV model is 28.78 compared with kurtosis of one-month returns of
3.54 in November 2008.
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In particular, many of the predictors correlate to stock market volatility in systematic ways that

affect the amount and usefulness of information about expected market return. In multi-period

settings, the persistence level and stochastic volatility of predictor variables have strong impacts

on expected return and risk from the investor’s perspective. Many of these effects are strongest

among the newer predictors that occasionally take on extreme values contemporaneous to high

return volatility. Overall, we complement Kandel and Stambaugh’s (1996) result that even weak

statistical evidence of predictability is economically important by showing that there are several

predictors for which strong statistical findings correspond with relatively little economic value.
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Table I: Summary statistics for predictor variables.
The table reports summary statistics for stock market return predictor variables. Panel A shows summary
statistics for the Goyal-Welch predictors and Panel B displays summary statistics for the new predictors.
All predictor variables are monthly such that the summary statistics reflect monthly values.

Standard
Predictor Sample start Mean deviation Skewness Kurtosis Autocorrelation

Panel A: Goyal and Welch (2008) predictors

DP 1927:01 −3.37 0.46 −0.22 2.65 0.99
DY 1927:01 −3.32 0.45 −0.46 2.72 0.99
EP 1927:01 −2.74 0.42 −0.60 5.60 0.99
DE 1927:01 −0.64 0.33 1.51 9.00 0.99
SV AR 1927:01 0.00 0.01 5.79 46.45 0.63
BM 1927:01 0.57 0.27 0.78 4.45 0.99
NTIS 1927:01 0.02 0.03 1.65 11.20 0.98
TBL 1927:01 0.03 0.03 1.08 4.27 0.99
LTY 1927:01 0.05 0.03 1.08 3.59 1.00
LTR 1927:01 0.00 0.02 0.59 7.66 0.04
TMS 1927:01 0.02 0.01 −0.29 3.16 0.96
DFY 1927:01 0.01 0.01 2.48 11.82 0.98
DFR 1927:01 0.00 0.01 −0.39 10.75 −0.12
INFL 1927:01 0.00 0.01 1.08 16.75 0.48

Panel B: New predictors

PLS 1927:01 −0.71 0.34 −4.68 32.48 0.96
GAP 1947:12 0.00 0.07 −0.03 1.98 0.99
NOS 1958:02 0.01 0.04 −0.01 4.70 0.66
DOW 1960:01 0.90 0.10 −1.11 3.91 0.94
TAIL 1963:01 0.00 1.00 −0.49 2.78 0.82
COR 1963:03 0.26 0.11 0.86 4.34 0.90
SII 1973:01 0.00 0.25 0.38 2.96 0.97
GP 1975:01 −0.20 0.28 −0.57 2.50 0.99
OIL 1983:04 0.00 0.09 −0.21 5.29 0.17
V RP 1990:01 16.20 20.40 −3.70 56.17 0.28
LJV 1996:06 0.00 0.00 2.94 14.19 0.96
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Table II: Predictive regression coefficients from OLS.
The table reports predictive regression coefficients, associated p-values against the null of no predictability,
and regression R2s from OLS regressions. Panel A shows predictive regression coefficients for the Goyal-
Welch predictors and Panel B displays coefficients for the new predictors. The predictive regressions are
monthly log stock market excess returns on lagged values of the predictor.

Predictor Coefficient p-value R2

Panel A: Goyal and Welch (2008) predictors

DP 0.005 0.295 0.002
DY 0.008 0.026 0.004
EP 0.008 0.063 0.003
DE −0.002 0.756 0.000
SV AR −0.385 0.536 0.002
BM 0.013 0.203 0.004
NTIS −0.158 0.077 0.006
TBL −0.093 0.085 0.003
LTY −0.073 0.190 0.001
LTR 0.113 0.101 0.003
TMS 0.189 0.127 0.002
DFY 0.152 0.786 0.000
DFR 0.188 0.325 0.002
INFL −0.365 0.363 0.001

Panel B: New predictors

PLS 0.028 0.003 0.031
GAP −0.091 0.000 0.019
NOS −0.119 0.009 0.011
DOW −0.032 0.155 0.005
TAIL 0.004 0.018 0.009
COR 0.030 0.089 0.006
SII −0.015 0.054 0.007
GP 0.019 0.003 0.014
OIL −0.035 0.200 0.006
V RP 0.046 0.000 0.049
LJV 4.278 0.120 0.016
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Table III: CER differences for return predictability.
The table reports CER differences that capture the economic value of return predictability in models with
constant volatility or stochastic volatility.

CER differences

One-month horizon Three-month horizon

Constant Stochastic Constant Stochastic
Predictor volatility volatility volatility volatility

Panel A: Goyal and Welch (2008) predictors

DP 0.24 0.39 0.24 0.36
DY 0.53 0.35 0.52 0.30
EP 0.42 0.26 0.41 0.23
DE 0.03 0.02 0.03 0.03
SV AR 0.21 0.23 0.10 0.11
BM 0.51 0.23 0.49 0.22
NTIS 0.69 0.52 0.65 0.40
TBL 0.35 1.18 0.34 1.01
LTY 0.17 0.83 0.17 0.73
LTR 0.31 0.82 0.04 0.12
TMS 0.25 0.19 0.23 0.16
DFY 0.05 0.06 0.04 0.06
DFR 0.27 0.01 0.03 0.02
INFL 0.16 1.34 0.05 0.40

Panel B: New predictors

PLS 3.38 0.53 2.73 0.55
GAP 2.34 2.10 2.27 1.68
NOS 1.29 1.50 0.61 0.64
DOW 0.55 0.58 0.48 0.43
TAIL 1.03 0.52 0.68 0.33
COR 0.72 0.87 0.57 0.63
SII 0.81 0.69 0.76 0.50
GP 1.70 1.31 1.68 0.99
OIL 0.65 1.13 0.10 0.30
V RP 4.37 3.41 1.00 1.31
LJV 1.67 0.88 1.26 0.98
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Figure 1: Predictive return distribution quantiles and effects of predictability on port-
folio weight for the DP predictor.
The figure shows quantiles of the predictive return distributions and weight differences for the constant-
volatility models when DP is the market return predictor variable. The top panel shows quantiles of the
predictive return distribution for the P-CV model. The bottom panel shows the differences in optimal port-
folio weights between the P-CV and NP-CV models. The solid line in the return distribution represents the
median and the dashed lines are the 25th and 75th percentiles of the predictive return distribution in each
month. The weight differences represent the effect of including return predictability in the model.
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Figure 2: OLS R2s and CER differences.
The figure show scatter plots of the OLS R2 from a predictive regression of log market excess returns on
a predictor variable and the CER differences that captures the economic value of return predictability in
each of four frameworks. The one-month CV CER difference for a predictor is calculated as the difference
between the CERs of the P-CV investor for the optimal strategies under the P-CV and NP-CV models.
The one-month SV CER differences are calculated analogously with the P-SV and NP-SV models, and the
three-month CER differences use three-month predictive return distributions and optimal weights in the
constant-volatility and stochastic-volatility cases. The predictive R2s are from monthly regressions. The
CER differences are annualized by multiplying the monthly CER differences by 12.
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Figure 4: PLS predictor variable and stochastic volatility process.
The figure shows the PLS predictor variable in the top panel and the posterior mean of the annualized
standard deviation of the stock market return from the stochastic volatility process in the bottom panel.
The monthly standard deviation is annualized by multiplying by

√
12.
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Figure 5: Predictive return distribution quantiles and effects of predictability on port-
folio weight for the PLS predictor.
The figure shows quantiles of the predictive return distributions for the P-CV and P-SV models in the top
panels and the differences in optimal portfolio weights between the P-CV and NP-CV models and the P-SV
and NP-SV models in the bottom panels when PLS is the market return predictor variable. The solid line
in the return distribution represents the median and the dashed lines are the 25th and 75th percentiles of
the predictive return distribution in each month. The weight differences represent the effect of including
return predictability in the model for the constant volatility and stochastic volatility cases.

39



P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
ig

ur
e

6:
P

os
te

ri
or

s
of

au
to

re
gr

es
si

on
co

effi
ci

en
ts

in
th

e
co

ns
ta

nt
-v

ol
at

ili
ty

an
d

st
oc

ha
st

ic
-v

ol
at

ili
ty

m
od

el
s.

T
he

fig
ur

e
sh

ow
s

a
bo

x-
an

d-
w

hi
sk

er
s

pl
ot

fo
r

th
e

po
st

er
io

r
di

st
rib

ut
io

n
of

th
e

au
to

re
gr

es
sio

n
co

effi
ci

en
t

fo
r

ea
ch

m
od

el
an

d
pr

ed
ic

to
r

co
m

bi
na

tio
n.

Pa
ne

l
A

sh
ow

s
po

st
er

io
rs

fo
r

th
e

G
oy

al
-W

el
ch

pr
ed

ic
to

rs
an

d
Pa

ne
lB

sh
ow

s
po

st
er

io
rs

fo
r

th
e

ne
w

pr
ed

ic
to

rs
.

Ea
ch

pr
ed

ic
to

r
ha

s
po

st
er

io
rs

fo
r

th
e

P-
C

V
an

d
th

e
P-

SV
m

od
el

s.
In

ea
ch

bo
x-

an
d-

w
hi

sk
er

s
pl

ot
,t

he
re

d
lin

e
sh

ow
s

th
e

po
st

er
io

r
m

ed
ia

n,
th

e
bo

x
re

pr
es

en
ts

a
50

%
cr

ed
ib

le
in

te
rv

al
,a

nd
th

e
w

hi
sk

er
s

sp
an

a
95

%
cr

ed
ib

le
in

te
rv

al
.

40



P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
-C

V
P

-S
V

-0
.20.
0

0.
2

0.
4

0.
6

0.
8

1.
0

41



1995 2000 2005 2010 2015

-200

-100

0

100

V
R
P

Variance risk premium predictor

1995 2000 2005 2010 2015
0%

10%

20%

30%

A
n
n
u
a
li
ze
d
st
d
.
d
ev
. Stochastic volatility of market return

1995 2000 2005 2010 2015
0

25

50

75

100

125

S
td
.
d
ev
.

Stochastic volatility of variance risk premium

Figure 7: V RP predictor variable and stochastic volatility processes.
The figure shows the V RP predictor variable in the top panel, the posterior mean of the annualized standard
deviation of the stock market return from the stochastic volatility process in the middle panel, and the
posterior mean of the standard deviation of the V RP predictor variable from the stochastic volatility process
in the bottom panel. The monthly standard deviation of market returns is annualized by multiplying by√
12.
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Panel A: Constant volatility models

Figure 8: Predictive return distribution quantiles and effects of predictability on port-
folio weight for the V RP predictor.
The figure shows quantiles of the predictive return distributions and weight differences for the constant-
volatility models in Panel A and the stochastic-volatility models in Panel B when V RP is the market return
predictor variable. In Panel A (Panel B), the top panels show quantiles of the predictive return distribution
for the P-CV (P-SV) model at the one-month and three-month horizons. The bottom panels of Panel A
(Panel B) show the differences in optimal portfolio weights between the P-CV and NP-CV (P-SV and NP-
SV) models at the one-month and three-month horizons. The solid line in the return distribution represents
the median and the dashed lines are the 25th and 75th percentiles of the predictive return distribution in
each month. The weight differences represent the effect of including return predictability in the model for
each case.
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Panel B: Stochastic volatility models
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Figure 9: Predictive variance ratio for the V RP predictor.
The figure shows the predictive variance ratio for the NP-CV, P-CV, NP-SV, and P-SV models when V RP
is the market return predictor variable. The predictive variance ratio is calculated as the variance of the
three-month predictive return distribution divided by three times the variance of the one-month predictive
return distribution.
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A Estimation Appendix
We estimate the NP-CV, P-CV, NP-SV, and P-SV models using Markov chain Monte Carlo

(MCMC) techniques. For each model, we draw 110,000 sets of parameters from the posterior
distribution, and we discard the first 10,000 draws as a burn-in period to produce the 100,000
posterior draws that we use in the analysis. This appendix describes the MCMC chain and provides
information about prior parameters.

The (T × 1) vector of log excess returns is denoted by r. The predictor variable xt has T + 1
observations, and we refer to the (T ×1) vector of the first T observations as xl to denote its use as
a lagged predictor variable and the (T × 1) vector of the last T observations as x. Let the matrix
of regressors for the P-CV and P-SV models be ZP = [ιT ⊗ I2 xl ⊗ I2], where ιT is a (T × 1)
vector of ones and I2 is a (2×2) identity matrix, such that ZP is a (2T ×4) matrix. Further let the

corresponding matrix for the NP-CV and NP-SV models be ZNP =

[
ιT ⊗ I2 xl ⊗

[
0
1

]]
, such

that ZNP is a (2T × 3) matrix. Define a (2T × 1) vector y by stacking the (2 × 1) vectors
[

rt
xt

]
for t = 1, 2, . . . , T . For the models with constant volatility (NP-CV and P-CV), we define

Σ̃NP =


Σ 02 · · · 02
02 Σ 02
... . . . ...
02 · · · · · · Σ

 , (A1)

where 02 denotes a (2 × 2) matrix of zeros. Similarly, for the stochastic volatility models (NP-SV
and P-SV), we define

Σ̃P =


Σ1 02 · · · 02
02 Σ2 02
... . . . ...
02 · · · · · · ΣT

 . (A2)

Given these definitions, the VAR in equations (6) and (7) can be restated as

y = Zb+ ε, ε ∼ N(0, Σ̃), (A3)

inserting the appropriate Z and Σ̃ that correspond to the given model. In this setup, b is a (3× 1)
vector for the no-predictability models with ZNP and a (4× 1) vector for the predictability models
with ZP .

We draw the regression coefficients b from a normal distribution conditional on the draw of Σ̃.
Specifically,

b ∼ N
(
H

−1
(Z ′Σ̃−1y +Hb), H

−1
)
, (A4)

where H = (Z ′Σ̃−1Z+H) and the constraint −1 < βx < 1 ensures that the xt process is stationary.
We specify a diffuse prior for b with b = 0k and H = 10−6Ik, where k equals three for the no-
predictability models and four for the predictability models. We use an accept-reject algorithm to
produce draws of b such that −1 < βx < 1.

We draw Σ for the constant volatility models and Σt for the stochastic volatility models condi-
tional on the draw of b. For the NP-CV and P-CV models, we specify a conjugate normal-inverse-
Wishart prior. Conditional on b, we calculate the (T × 1) vectors of residuals εr and εx according
to equations (6) and (7), and we define ε =

[
εr εx

]
to be the (T × 2) matrix of residuals. The
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draw of Σ is then given by
Σ ∼ IW

(
V + ε′ε, v + T

)
. (A5)

To minimize the influence of the prior, we specify an empirical Bayes prior with v = k + 3 and
V = vΣ̂, where k is equal to three for NP-CV and four for P-CV and Σ̂ is the covariance matrix of
the OLS residuals for equations (6) and (7).

We draw from the stochastic volatility processes for the NP-SV and P-SV models following
Primiceri (2005), who generally uses the approach of Kim, Shephard, and Chib (1998). See Primiceri
(2005), Koop and Korobilis (2010), and Del Negro and Primiceri (2015) for details.9 Our prior
parameters are specified as follows. The initial states a0, log(σr,0), and log(σ̃x,0) are independently
normally distributed with mean zero and variance of four. For the W and S parameters (see
Primiceri (2005) for definitions), we specify prior means of 0.012ι2 for W and 0 for S with prior
variances of two for the diagonal elements of W and two for S. We check that these scales for the
priors are consistent with the scales of our variables. Following Del Negro and Primiceri (2015), we
iterate through the posterior draws by drawing the b, a, and σ parameters in order conditional on
the other parameters.

B Data Appendix
This section describes the predictor variables used in our empirical tests and notes the relevant

data sources. Some of the results in the paper are based on a monthly forecast horizon. As such, we
focus on predictor variables that are available at a monthly frequency. We also require that a given
forecasting variable has data availability through December 2017. The first group of 14 predictors
consists of updated versions of the variables considered in Goyal and Welch (2008).10 The sample
period for each of these variables is from January 1927 to December 2017.

1. Dividend-price ratio (DP ). The difference between the log of dividends paid on the S&P
500 index over the prior 12 months and the log of the index level.

2. Dividend yield (DY ). The difference between the log of dividends paid on the S&P 500
index over the prior 12 months and the log of the lagged index level.

3. Earnings-price ratio (EP ). The difference between the log of earnings on the S&P 500
index over the prior 12 months and the log of the index level.

4. Dividend-earnings ratio (DE). The difference between the log of dividends paid on the
S&P 500 index over the prior 12 months and the log of earnings on the S&P 500 index over
the prior 12 months.

5. Stock variance (SV AR). The sum of squared daily returns on the S&P 500 index over the
prior month.

6. Book-to-market ratio (BM). The ratio of book value to market value for the Dow Jones
Industrial Average.

7. Net equity expansion (NTIS). The ratio of the sum of net issues by NYSE stocks over
the prior 12 months to the total market capitalization of NYSE stocks.

8. Treasury bill yield (TBL). The yield on a three-month Treasury security.
9We use functions from Dimitris Korobilis to draw at and σt, and we thank him for sharing this code.

10Data on these predictors are from Amit Goyal’s website at http://www.hec.unil.ch/agoyal/. We thank Amit
Goyal for making these data available.
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9. Long-term Treasury bond yield (LTY ). The yield on a long-term Treasury security.

10. Long-term Treasury bond return (LTR). The return on a long-term Treasury security
over the prior month.

11. Term spread (TMS). The difference between the yield on a long-term Treasury security
and the yield on a three-month Treasury security.

12. Default yield spread (DFY ). The difference between the yield on BAA-rated corporate
bonds and the yield on AAA-rated corporate bonds.

13. Default return spread (DFR). The difference between the return on long-term corporate
bonds and the return on long-term Treasury bonds over the prior month.

14. Inflation (INFL). The monthly growth rate in the Consumer Price Index (CPI) for all
urban consumers. The inflation variable is lagged by one month to account for the reporting
lag in the CPI data.

We supplement the Goyal and Welch (2008) predictors with a second group of forecasting
variables from more recent literature. We search articles published in the Journal of Finance,
Journal of Financial Economics, and Review of Financial Studies subsequent to Goyal and Welch
(2008) and include 11 additional variables that satisfy our screen of being available at a monthly
frequency through December 2017. These predictors are summarized below.

15. Partial least squares aggregated book-to-market ratio (PLS). Following Kelly and
Pruitt (2013), PLS is extracted from the cross section of portfolio-level book-to-market ratios
using a two-step procedure. We collect data on returns and book-to-market ratios for 100
portfolios formed on size and book-to-market from Kenneth French’s website. We also collect
return data for the CRSP value-weighted index from the same source. We convert all portfolio
returns to log returns and compute the log book-to-market ratio for each portfolio at the
end of June of each year (i.e., at the portfolio formation date). Following Campbell and
Vuolteenaho (2004), each portfolio’s log book-to-market ratio from July to May is constructed
by subtracting the portfolio’s cumulative log return (from the previous June) from its end-
of-June log book-to-market ratio. In the first step of the PLS procedure, we run a time-series
regression for each portfolio i of log book-to-market ratio on future log market return:

log(BMi,t) = φi,0 + φi,1rt+1 + ei,t. (B1)

In the second step, we estimate a cross-sectional regression for each month t of book-to-market
ratio on the corresponding first-stage loading:

log(BMi,t) = ct + Ftφ̂i,1 + wi,t, (B2)

and PLSt is the estimate of the latent factor Ft. The PLS series starts in January 1927.

16. Output gap (GAP ). Following Cooper and Priestly (2009), GAP is the trend deviation of
the log of industrial production. We obtain monthly data on the Industrial Production Index
from the Federal Reserve Bank of St. Louis website.11 The industrial production data are
lagged by one month to account for the publishing lag from the Federal Reserve. We estimate
GAP from the following regression:

yt = a+ bt+ ct2 + νt, (B3)
11See https://fred.stlouisfed.org/.
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where t indexes sample period months, yt is the log of industrial production, and GAPt = νt
is the regression residual. The GAP series starts in December 1947.

17. New orders-to-shipments of durable goods (NOS). Following Jones and Tuzel (2013),
NOS is the difference between the log of new orders of durable goods and the log of shipments
of durable goods. The data on new orders and shipments are from the Census Bureau’s Sur-
vey of Manufacturers’ Shipments, Inventories, and Orders.12 We use data based on Standard
Industrial Classification (SIC) codes through February 1992 and data based on North Amer-
ican Industry Classification (NAICS) codes starting in March 1992. We adjust the NAICS
shipments data by subtracting shipments of semiconductors. The data are lagged by one
month to account for reporting delay. The NOS series starts in February 1958.

18. Nearness to Dow historical high (DOW ). Following Li and Yu (2012), DOW is the ratio
of the current level of the Dow Jones Industrial Average (DJIA) index to its historical high.
The calculation is based on daily, end-of-day prices, and DOW for a given month is the value
at the last trading day of that month. The DJIA data are from Thomson Reuters Eikon. The
DOW series starts in January 1960.

19. Tail risk (TAIL). Following Kelly and Jiang (2014), we estimate TAIL using Hill’s (1975)
power law estimator. The underlying data are daily stock returns from the Center for Research
in Security Prices (CRSP) database. The sample includes all NYSE, Amex, and NASDAQ
stocks with share codes 10 and 11. For a given month t, we use the pooled cross section of
daily returns to compute the common time-varying component of return tails as

TAILt =
1

Kt

Kt∑
k=1

log

(
Rk,t

ut

)
, (B4)

where Rk,t is the kth daily return that falls below the extreme value threshold for month t
(ut), and Kt is the number of such events in month t. The threshold parameter, ut, is the
fifth percentile of the pooled cross-sectional distribution of daily returns in month t. The
TAIL measure is standardized to have a mean of zero and a variance of one. The TAIL
series starts in January 1963.

20. Average correlation (COR). Following Pollett and Wilson (2010), COR is the value-
weighted average correlation for the largest 500 stocks by market capitalization in the CRSP
universe at the end of a given month. The sample includes all NYSE, Amex, and NASDAQ
stocks with share codes 10 and 11. We compute the correlation between each pair of stocks i
and j at the end of month t, ρ̂ij,t, using the prior three months of daily returns. The average
correlation measure is

CORt =

500∑
i=1

∑
j 6=i

wi,twj,tρ̂ij,t, (B5)

where wi,t and wj,t are the market capitalizations of stocks i and j divided by the sum of the
market capitalizations of the largest 500 stocks at the end of month t. The COR series starts
in March 1963.

21. Short interest index (SII). Following Rapach, Ringgenberg, and Zhou (2016), SII is the
trend deviation of the log of equal-weighted short interest. We collect mid-month, firm-level
short interest data from Compustat and compute the percentage of shares held short in a
given firm by dividing by the firm’s number of shares outstanding from CRSP. The sample

12See https://www.census.gov/manufacturing/m3/historical_data/index.html.
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excludes assets with a share price below $5 and assets with a market capitalization below the
fifth percentile of NYSE market capitalization. Aggregate short interest for month t, EWSIt,
is the equal-weighted average percentage short interest across all assets. We estimate SII
from the following regression:

log(EWSIt) = a+ bt+ νt, (B6)

where t indexes sample period months, and SIIt = νt is the regression residual. The SII
series starts in January 1973.

22. Gold-to-platinum price ratio (GP ). Following Huang and Kilic (2018), GP is the dif-
ference between the log gold price and the log platinum price. Gold prices are the monthly
averages of daily 10:30 A.M. fixing prices in the London Bullion Market. These data are
obtained from the Federal Reserve Bank of St. Louis website. Platinum prices from April
1990 to December 2017 are the monthly averages of daily 9:45 A.M. fixing prices in the
London Platinum and Palladium Market. These data are obtained from Thomson Reuters
Eikon. Monthly platinum prices prior to April 1990 are from Kitco.13 The GP series starts
in January 1975.

23. Oil price change (OIL). Following Driesprong, Jacobsen, and Maat (2008), OIL is the
monthly change in oil price, measured as a log return. We use end-of-month prices for
NYMEX Light Sweet Crude Oil from Thomson Reuters Eikon. The OIL series starts in
April 1983.

24. Variance risk premium (V RP ). Following Bollerslev, Tauchen, and Zhou (2009), V RP is
the difference between the squared VIX and the monthly realized variance of the S&P 500
index computed from intraday data. The V RP data are from Hao Zhou’s website.14 The
V RP series starts in January 1990.

25. Left jump tail variation (LJV ). Following Bollerslev, Todorov, and Xu (2015), LJV is an
estimate of the left jump tail variation over the coming month. If we let Ot,τ (k) denote the
time t price of an out-of-the-money put option on the S&P 500 index with time to expiration
τ and log-moneyness k, LJV is computed using

LJVt,τ = τφ−
t e

−α−
t |kt| (α−

t kt
(
α−
t kt + 2

)
+ 2

) (
α−
t

)−3
, (B7)

α−
t = argmin

α

1

N−
t

Nt∑
i=1

∣∣∣∣log( Ot,τ (kt,i)

Ot,τ (kt,i−1)

)
(kt,i − kt,i−1)

−1 − (1 + α)

∣∣∣∣ , (B8)

φ−
t = argmin

φ

1

N−
t

Nt∑
i=1

∣∣∣∣log(ert,τOt,τ (kt,i)

τFt−,τ

)
(B9)

− (1 + α−
t )kt,i + log(α−

t + 1) + log(α−
t )− log(φ)

∣∣∣∣ ,
where N−

t denotes the number of puts used in the estimation, with 0 ≤ −kt,1 < · · · < −kt,N−
t

.
We follow Bollerslev, Todorov, and Xu (2015) and implement this estimator weekly for all
S&P 500 options with times to maturity between 8 and 45 calendar days and meeting liquidity
screens. We then average across weeks ending in a calendar month. Bollerslev, Todorov, and

13See http://www.kitco.com/charts/historicalplatinum.html.
14See https://sites.google.com/site/haozhouspersonalhomepage/. We thank Hao Zhou for making these data avail-

able.
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Xu’s (2015) main predictive regression results use a forecast horizon of six months. We
therefore construct LJV as the six-month moving average of the left jump tail variation
measure. The LJV series starts in June 1996.

C Derivation Appendix
The three-month predictive return variance is given by an analogue of equation (5),

V ar(RT,T+3|Mi, DT ) = E[V ar(RT,T+3|Mi, θ,DT )|Mi, DT ] + V ar[E(RT,T+3|Mi, θ,DT )|Mi, DT ].
(C1)

To better understand the components of E[V ar(RT,T+3|Mi, θ,DT )|Mi, DT ], we work with the
version of this expression in log excess returns, E[V ar(rT,T+3|Mi, θ,DT )|Mi, DT ]. This term can
be written as

E[V ar(rT,T+3|Mi, θ,DT )|Mi, DT ] = E[V ar(rT+1 + rT+2 + rT+3|Mi, θ,DT )|Mi, DT ], (C2)

and

rT+1 + rT+2 + rT+3 = α+ βxT + εrT+1 + α+ β(αx + βxxT + εxT+1) + εrT+2 (C3)
+ α+ β(αx + βx(αx + βxxT + εxT+1) + εxT+2) + εrT+3. (C4)

The expression for the portion of rT+1 + rT+2 + rT+3 that relates to uncertainty about future
expected return is

β(1 + βx)ε
x
T+1 + βεxT+2, (C5)

such that the contribution of uncertainty about future expected return in the constant-volatility
case is

E[V ar(β(1 + βx)ε
x
T+1 + βεxT+2|Mi, θ,DT )|Mi, DT ] = E[β2((1 + βx)

2 + 1)σ2
x|Mi, DT ]. (C6)

D Robustness Appendix
The results in Table III correspond to an investor with a risk-aversion parameter of γ = 5.

Table D.I presents results for γ = 2, and Table D.II presents results for γ = 8.
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Table D.I: CER differences for return predictability with γ = 2.
The table reports CER differences that capture the economic value of return predictability in models with
constant volatility or stochastic volatility for an investor with γ = 2.

CER differences

One-month horizon Three-month horizon

Constant Stochastic Constant Stochastic
Predictor volatility volatility volatility volatility

Panel A: Goyal and Welch (2008) predictors

DP 0.60 0.93 0.59 0.77
DY 1.32 0.83 1.30 0.69
EP 1.04 0.61 1.03 0.50
DE 0.07 0.04 0.07 0.04
SV AR 0.51 0.58 0.24 0.24
BM 1.27 0.55 1.23 0.46
NTIS 1.72 1.26 1.63 1.06
TBL 0.87 2.88 0.86 2.52
LTY 0.42 2.01 0.42 1.76
LTR 0.78 1.98 0.10 0.23
TMS 0.63 0.44 0.59 0.36
DFY 0.11 0.15 0.10 0.12
DFR 0.68 0.02 0.06 0.01
INFL 0.39 3.25 0.13 0.91

Panel B: New predictors

PLS 8.51 1.32 8.16 1.17
GAP 5.85 5.00 5.67 4.17
NOS 3.22 3.60 1.54 1.57
DOW 1.37 1.40 1.20 0.99
TAIL 2.59 1.27 1.72 0.76
COR 1.79 2.09 1.44 1.41
SII 2.02 1.73 1.90 1.49
GP 4.26 3.22 4.20 2.91
OIL 1.62 2.69 0.26 0.34
V RP 12.09 8.34 2.62 3.28
LJV 4.13 2.06 3.17 1.42
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Table D.II: CER differences for return predictability with γ = 8.
The table reports CER differences that capture the economic value of return predictability in models with
constant volatility or stochastic volatility for an investor with γ = 8.

CER differences

One-month horizon Three-month horizon

Constant Stochastic Constant Stochastic
Predictor volatility volatility volatility volatility

Panel A: Goyal and Welch (2008) predictors

DP 0.15 0.24 0.15 0.22
DY 0.33 0.22 0.32 0.18
EP 0.26 0.16 0.25 0.13
DE 0.02 0.01 0.02 0.01
SV AR 0.13 0.15 0.06 0.06
BM 0.32 0.14 0.30 0.13
NTIS 0.43 0.33 0.40 0.25
TBL 0.22 0.74 0.21 0.64
LTY 0.11 0.52 0.10 0.45
LTR 0.20 0.52 0.02 0.06
TMS 0.16 0.12 0.14 0.09
DFY 0.03 0.04 0.03 0.03
DFR 0.17 0.00 0.02 0.00
INFL 0.10 0.84 0.03 0.24

Panel B: New predictors

PLS 2.11 0.33 1.71 0.31
GAP 1.46 1.32 1.41 1.07
NOS 0.80 0.95 0.38 0.41
DOW 0.34 0.36 0.30 0.27
TAIL 0.64 0.33 0.42 0.20
COR 0.45 0.55 0.36 0.39
SII 0.50 0.44 0.47 0.33
GP 1.06 0.83 1.04 0.64
OIL 0.40 0.71 0.06 0.11
V RP 2.71 2.16 0.62 0.74
LJV 1.04 0.55 0.77 0.58
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