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1. Introduction

In an influential paper, Harvey, Liu and Zhu (2016) (HLZ) “argue that most

claimed research findings in financial economics are likely false.” This argument

is based on multiple testing statistics—methods that account for the fact that

dozens, or even hundreds of tests may underlie the data. The existence of many

tests violates classical assumptions, suggesting that the false discovery rate (FDR)

may be much higher than suggested by classical methods.

Surprisingly, HLZ’s FDR estimates imply almost the opposite of their argu-

ment. HLZ find that a t-stat hurdle of around 3.0 implies an FDR ≤ 5% (pages 22,

24, and 30). Since most asset pricing t-stats exceed 3.0 (Chen 2021), this hurdle

implies that most findings have a “true discovery rate” exceeding 95%. In other

words, most claimed findings are likely true.

These surprising results warrant a thorough and robust re-examination. In

this paper, I perform such a re-examination by developing non- and semi-

parametric FDR estimators and applying them to the Chen and Zimmermann

(Forthcoming) (CZ) dataset of published cross-sectional stock return predictors.

These estimators build on the same framework used by HLZ’s preferred Ben-

jamini and Yekutieli (2001) (BY) algorithm. Unlike HLZ, I derive my estimators

from a statistical model of publication bias, and provide simple expressions that

explain why the FDR is so small. Additionally, I verify my estimators in simula-

tions that closely match the empirical dependence in the CZ data. These sim-

ulations address concerns about correlations that are left unanswered by HLZ.

Lastly, I make code available at https://github.com/chenandrewy/mostly-true.1

My re-examination consistently confirms HLZ’s numerical result: a t-hurdle

of 3.0 implies an FDR ≤ 5%. I extend this finding and show that for lower t-stat

hurdles, the FDR remains relatively small. In my preferred estimate, the FDR

among all CZ predictors is at most 30%. Overall, my findings thoroughly sup-

port the surprising conclusion that most claimed statistical findings in cross-

sectional asset pricing are likely true.

In the remainder of the introduction, I summarize the intuition, the robust-

ness to correlations, and the relation to the literature.

1This code automatically downloads the CZ data, which is available at
https://www.openassetpricing.com/.
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1.1. Summary of Intuition

The main result can be derived in just four lines of math.

Suppose we define “discoveries” as predictors with absolute t-stats |ti | ex-

ceeding 2.60. If |ti | is well-behaved (a Glivenko-Cantelli theorem holds),2 the

FDR among these discoveries satisfies

FDR(|ti | > 2.60) ≈ Pr (Fi ||ti | > 2.60) ,

where Fi is the event that predictor i is false. Intuitively, the FDR is the prob-

ability that a predictor is false, given that the predictor is declared a discovery.

Applying Bayes rule and noting that Pr (Fi ) ≤ 1 yields

FDR(|ti | > 2.60) ≈ Pr (|ti | > 2.60|Fi )

Pr (|ti | > 2.60)
Pr (Fi )

≤ Pr (|ti | > 2.60|Fi )

Pr (|ti | > 2.60)
. (1)

The numerator is just the p-value corresponding to |ti | = 2.60. Thus, if we have

an estimate of Pr (|ti | > 2.60), we have an upper bound on the FDR.

Publication bias, however, means that the sample counterpart of

Pr (|ti | > 2.60) is upward-biased. One way to handle this problem is to use

external data. Yan and Zheng (2017) (YZ) show that, among trading strategies

built off of random combinations of accounting variables, at least 15% of

strategies have |ti | > 2.60 (see YZ’s Table 1). Thus, as long as the research process

is more likely to generate |ti | > 2.60 than random mining, we have the following

bound on the FDR

FDR(|ti | > 2.60) ≤ 1%

0.15
≈ 7%, (2)

where 1% is the p-value corresponding to |ti | = 2.60. Since 70% of |ti | exceed

2.60, most claimed findings are at least 93% likely to be true.

Alternatively, one can address publication bias by fitting a parametric model

to |ti | and then applying the non-parametric Equation (1). Fitting such a model

amounts to extrapolating unobserved |ti | near zero. While this method sounds

2Glivenko-Cantelli theorems extend laws of large numbers (the convergence of sample mo-
ments) to cover the convergence of empirical distribution functions. Like the law of large num-
bers, Glivenko-Cantelli holds under weak dependence.
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dangerous, it can be made conservative by assuming that |ti | has a mode at

0—that is, assuming the typical predictor has absolutely no predictive power,

even in-sample.

Appendix A.1 of HLZ provides one such conservative estimate. They fit an ex-

ponential density to the right tail of their hand-collected t-stats, and consistently

find a scale parameter of around 2.0, implying that

FDR(|ti | > 2.60) ≤ 1%

Pr (|ti | > 2.6)
= 1%

exp(−2.6/2.0)
≈ 4%.

HLZ express doubts about this estimate due to the “underlying assumption” of

“independence among t-statistics.” However, I show that such an assumption is

not necessary and that more conservative assumptions also lead to a small FDR.

In summary, the FDR is small because the research process readily generates

very large t-stats compared to a standard normal distribution. This property can

be seen in the frequency of large t-stats in random accounting-based strategies

(Yan and Zheng (2017)) or in conservative extrapolations of the extremely large

t-stats of published strategies. Either way, the multiple testing adjustment to the

p-value is quite moderate.

1.2. Robustness to Correlations

Equation (2) makes minimal assumptions about correlations. I assume only

that the share of |ti | that exceeds 2.60 is a good estimate of the probability that

|ti | exceeds 2.60. Thus, the kind of weak dependence assumed in GMM is all that

is required. That weak dependence is sufficient for the validity of simple FDR

estimates was first demonstrated by Storey, Taylor and Siegmund (2004) (see also

Ferreira and Zwinderman (2006); Genovese et al. (2006); Farcomeni (2007)).

This result contrasts with HLZ’s statement that the Benjamini-Hochberg al-

gorithm is “only valid when the test statistics are independent or positively de-

pendent.” This statement, however, is not true. Independence or positive re-

gression dependence are sufficient conditions for Equation (2), but they are not

necessary (see Theorems 1.2 and 1.3 of Benjamini and Yekutieli (2001)).

To verify that the data display sufficiently weak dependence, I simulate data

by bootstrapping from residuals from the CZ data. The bootstraps are clustered

so that residuals from the same month are always drawn together, thus ensuring

that the simulation inherits the empirical correlation structure. Indeed, I show
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that the distribution of pairwise correlations in the simulations closely matches

the distribution in the data.

Estimations on these simulations show that the semi-parametric estimates

reliably place an upper bound on the actual FDR. This reliability holds even in

simulations in which 99% of predictors are false and true predictors return only

25 bps per month. It also holds under extreme forms of publication bias.

The simulations show that extrapolating from the observed |ti | distribution is

safe under a realistic range of simulations. Thus, my semi-parametric estimates

provide a simple alternative to the more complicated methods that impose more

realistic structure (e.g. HLZ’s model with correlations, Chen (2020)). Indeed, my

preferred semi-parametric estimator can be calculated entirely by hand.

These results show that HLZ’s preferred Benjamini and Yekutieli (2001) algo-

rithm is excessively conservative. Though the finance literature frequently fol-

lows HLZ’s use of Benjamini-Yekutieli (e.g. Jensen et al. (2021)), the statistics lit-

erature generally finds the implied FDR penalty is not necessary (Efron (2012)),

consistent with my theoretical and simulation results.

1.3. Relation to the Literature

This paper addresses only the non- and semi-parametric methods in HLZ.

These conservative methods assume that t-hurdles should be raised. Thus they

cannot address the question of whether t-stat hurdles should be raised. I address

this broader question with a re-examination of HLZ’s parametric estimates in a

companion paper (Chen (2020)).

HLZ’s estimates imply that most findings are likely true, but this result is not

easily discerned. From the abstract and introduction, the reader can see that t-

hurdles should be raised to 3.0, but no other numerical results can be found. The

next 18 pages describe the methodology. The main figure (on page 21) does not

provide the necessary information either. The reader must dig into the text on

page 22 and simulate HLZ SMM estimates to figure out that for 70% of findings,

the FDR≤ 5%. But even then, she would have doubts, as HLZ present a multitude

of t-hurdle estimates, their primary estimates abstract from publication bias, and

because they express unresolved concerns about correlations. The contribution

of my paper is to cleanly tie all of these strands together, rigorously account for

publication bias and correlations, and robustly demonstrate that most claimed
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findings are likely true. I also show how external data can be used to bound pub-

lication bias effects and provide closed form expressions that illustrate the intu-

ition.

Other followups to HLZ impose significant structure, resulting in relatively

complicated estimations (Chen (2020); Chen and Zimmermann (2020); Chor-

dia, Goyal and Saretto (2020); Giglio, Liao and Xiu (2021); Harvey and Liu (2021);

Jensen, Kelly and Pedersen (2021); Zhu (2021)).3 Nevertheless, these more struc-

tured estimates largely find that published cross-sectional predictors are largely

true. For example, Chen and Zimmermann (2020) and Chen (2020) use maxi-

mum likelihood and SMM to estimate that in-sample mean returns are biased

upward by around 15% and that the FDR is at most 20%. Harvey and Liu (2021)

examine a multi-step mixture-bootstrap model and find FDRs of 10%, 21%, and

38% across three calibrations. My closed-form expressions provide the intuition

behind these less transparent estimation procedures.

An important caveat is that I only examine the numerical findings of the

cross-sectional literature. I do not assess whether these numerical findings ad-

dress the written claims. Indeed, many of these numerical findings rely on the

trading of illiquid stocks (Chen and Velikov (2021)), and many do not provide

sufficient evidence for their economic conclusions (Kozak, Nagel and Santosh

(2018)). More broadly, HLZ’s claim that most research findings are likely false

may still be correct. However, verifying this claim seems to be outside of the

realm of multiple testing statistics.

2. Data and Statistical Framework

I describe the data (Section 2.1) and the statistical framework (Section 2.2).

Along the way, I define key concepts like “statistical finding,” “publication bias,”

and the “false discovery rate.”

2.1. Data

I use the Chen and Zimmermann (Forthcoming) dataset of 205 reproduced

cross-sectional stock return predictors. These data draw from a larger set of 319

characteristics examined in other meta-studies. Based on their reading of the

3An exception is Chen (2021), but that paper focuses on the null of no predictability anywhere,
and cannot formally estimate the FDR.
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original papers, CZ judge that these 205 predictors should produce t-stats exceed

1.96 in absolute value in long-short portfolio tests. These tests, in turn, attempt

to follow the original papers’ methods as closely as possible. This selection de-

fines my notion of a “statistical finding.”

The t-stats from CZ’s long-short tests are shown in Table 1. Notably, 60% of

predictors have |ti | that exceed HLZ’s recommended t-stat hurdle of 3.0. The

lowest decile |ti | is 1.92, indicating that almost all predictors are significant in

the traditional sense. This is clearly the result of “publication bias”—that is, the

idea that results with larger t-stats are more likely to be selected for sharing.4

Indeed, as described above, the very definition of a “statistical finding” embeds

publication bias.

[Table 1 about here]

The bottom panel of the Table 1 examines the distribution of pairwise corre-

lations across monthly long-short returns. HLZ argue for using the highly con-

servative Benjamini and Yekutieli (2001) (BY) algorithm for FDR control to ac-

count for these correlations. Simu-theoretical evidence suggests that conserva-

tive dependence controls are mostly relevant for correlations close to 1.0 or -1.0

(Reiner-Benaim (2007)). However, this panel shows that these correlations clus-

ter around zero. This clustering happens whether I use the longest overlapping

in-sample data (“overlapping in-sample”), or restrict the data to be a balanced

panel.

These average-zero correlations run counter to the common perception in fi-

nance that there is a strong factor structure in the cross-section of returns. While

this result is certainly true for Fama and French’s size and B/M sorted portfolios

(Lewellen, Nagel and Shanken (2010)), many papers find that long-short returns

like CZ’s have typically zero correlation (McLean and Pontiff (2016)), and that

many components are required to summarize anomaly data (Jensen, Kelly and

Pedersen (2021)).

More broadly, these correlations suggest that the process of that generates |ti |
is well-behaved. A large spike of correlations near 1.0 or -1.0 would bring about

concerns that the process is in a sense non-stationary. In contrast, the moderate

correlations in Table 1 suggest that fundamental theorems like the weak law of

4“p-hacking,” “data-snooping,” and “data-mining” all have extremely similar definitions. See
Chen (2021) for a richer discussion.

6



large numbers should hold. This observation motivates the statistical framework

that follows.

2.2. Statistical Framework

Suppose the cross-sectional predictability literature is generated in two steps.

The first step generates N “unbiased” predictors with accompanying t-stats

t1, t2, ..., tN . NF of these unbiased predictors are false, and these false predictors

satisfy

ti |Fi ∼ student’s-t(ν) (3)

where the event Fi indicates predictor i is false and ν is the degrees of freedom

parameter. I do not assume independence in Equation (3).

In the second step, NS predictors are selected for sharing based on the size of

the t-stat. Let Si denote the event that predictor i is selected, and assume

Pr (Si |ti ) = s (|ti |) (4)

s (·) weakly increasing

s (|t |) = s̄, for |t | > tgood (5)

where s (·) is a function that takes on values in [0,1] and tgood is a real number.

Equations (4)-(5) imply that a larger t-stat implies selection is more likely, but

only up to a point (tgood). One can include additional variables that contribute to

selection in Equation (4), but these can be averaged out leading to an equivalent

form (e.g. Chen (2021)).

The idea that literature generation is separated this way is certainly an ab-

straction. In reality, it is likely that the two steps occur simultaneously. Neverthe-

less, this abstraction can be a useful framework for conceptualizing publication

bias. One can think of the unbiased predictors as the ideal set of predictors the

meta-econometrician would like to have—though this set may not exist in reality.

Appendix A.1 shows how a model in which these two steps occur simultaneously

can be “orthogonalized” into the framework above.

I assume that the joint process {ti ,Fi ,Si }i=1,...,N is well-behaved in the follow-
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ing sense:

1

N

N∑
i=1

I
(|ti | ≥ t̄

) p−→ Pr
(|t1| ≥ t̄

)
(6)

1

NF

N∑
i=1

I
(
ti | ≥ t̄ ∩Fi

) p−→ Pr
(|t1| ≥ t̄ |F1

)
(7)

1

NS

N∑
i=1

I
(
ti | ≥ t̄ ∩Si

) p−→ Pr
(|t1| ≥ t̄ |S1

)
. (8)

where I (·) is an indicator function that takes a value of 1 if the argument is true

and zero otherwise.

Equations (6)-(8) state that if we keep counting the share of t-stats that exceed

the a hurdle (LHS), we’ll eventually recover the probability that a given t-stat ex-

ceeds the hurdle (RHS). This kind of condition is important for interpreting order

statistics like those shown in Table 1. Indeed, if Equations (6)-(8) do not hold, in-

terpreting Table 1 is tricky in the way that interpreting the deciles of the level of

U.S. GDP is tricky.

More formally, Equations (6)-(8) hold if the joint process is strongly stationary

(Tucker (1959)), or under a wide variety of general weak dependence conditions

that are quite technical (Farcomeni (2007)).5 Empirically, the correlations shown

in Table 1 suggest that Equations (6)-(8) are valid, and I verify this assumption in

bootstrap simulations in Section 4.2.

Following Benjamini and Hochberg (1995), define the FDR as

FDRN
(
t̄
)≡ E

{∑N
i=1 I

(|ti | > t̄ ∩Fi
)∑N

i=1 I
(|ti | > t̄

) }
(9)

where for simplicity I assume that the denominator is positive. Equation (9) has

an intuitive definition: it is the expected fraction of “discoveries” (predictors that

exceed t̄ ) that are also false.

This intuitive definition means that the FDR is well-suited to address HLZ’s

argument that most claimed findings are likely false. HLZ’s argument can for-

mally defined as “for a hurdle t̄ that covers more than 50% of claimed find-

ings, FDRN
(
t̄
) > 0.50.” Due to this interpretability, I focus on the FDR. In con-

trast, the Bonferroni and Holm procedures studied by HLZ measure FWERN
(
t̄
)≡

5Equations (6)-(8) are the result of Glivenko-Cantelli theorems, which are a fundamental result
in empirical process theory that extend the laws of large numbers to empirical distributions, and
are commonly used in machine learning.
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Pr
(∑N

i=1 I
(|ti | > t̄ ∩Fi

)> 0
)

. In words, the FWER is the probability of having just

one false discovery. This quantity says very little about whether most claimed

findings are likely false.

I denote FDRN
(
t̄
)

with the subscript N to emphasize an unusual aspect of

the Benjamini-Hochberg framework: this fundamental quantity FDRN
(
t̄
)

is de-

fined with respect to a small sample. This differs from statistical objects used in

finance, which are typically independent of sample size (e.g. expected returns).

Indeed, many followups to Benjamini and Hochberg (1995) (e.g. Storey, Tay-

lor and Siegmund (2004); Genovese, Roeder and Wasserman (2006)) focus on the

large sample FDR:

FDR
(
t̄
)≡ plim

N−→∞
FDRN

(
t̄
)

. (10)

This large sample FDR has many appealing properties. Given the regularity con-

ditions Equations (6)-(8), the large sample FDR boils down to a simple and intu-

itive expression:

FDR
(
t̄
)= plim

N−→∞
E

{[
N−1

F

∑N
i=1 I

(|ti | > t̄ ∩Fi
)][

N−1 ∑N
i=1 I

(|ti | > t̄
)] [

NF

N

]}
(11)

= Pr
(|t1| > t̄ |F1

)
Pr

(|t1| > t̄
) Pr (F1) (12)

= Pr
(
F1||t1| > t̄

)
, (13)

where the second line applies the regularity conditions to each square bracket. In

other words, the FDR is just the probability that a given predictor is false, given

that the predictor’s t-stat exceeds the hurdle t̄ . Moreover, the RHS of Equation

(13) is equivalent to the empirical Bayes FDR (Efron et al. (2001)), and Storey’s

(2002) pFDR leads to the same expression in large samples (Storey, Taylor and

Siegmund (2004)).

Thus, for the remainder of the paper, I focus on the large sample FDR defined

in Equation (10). This approach reduces ambiguity, as Benjamini-Hochberg,

Storey, and empirical-Bayes FDRs are all equivalent in this limit. Moreover, this

large N limit is appropriate given that one of the main concerns in asset pricing

is that N is “too large” in some sense. As noted by Benjamini (2008), the distinc-

tion between these approaches emerges if Pr (F1) = 1 is actually possible, which

is unlikely to be the case for cross-sectional predictability, as we will see shortly.
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3. Non-Parametric FDR Estimates

This section presents the main result: simple and conservative FDR estimates

that adjust for publication bias. Though the calculation is simple (Section 3.3),

the theoretical justification takes some explanation (Section 3.1-3.2). I also com-

pare my estimates with HLZ’s (Section 3.4).

3.1. A Non-Parametric Estimator

Noting that Pr (F1) ≤ 1, Equation (12) implies the following upper bound on

the FDR:

FDR
(
t̄
)≤ Pr

(|t1| > t̄ |F1
)

Pr
(|t1| > t̄

) . (14)

The numerator is just the p-value corresponding to a t-stat of t̄ (Equation (3)).

The denominator is the right tail of unbiased findings, suggesting a naive esti-

mator for the RHS:

�FDRnaive
(
t̄
)≡ Pr

(|t1| > t̄ |F1
)∑N

i=1 I
(|ti | > t̄ ∩Si

)
/Ns

. (15)

That is, the naive estimate just replaces Pr
(|t1| > t̄

)
in Equation (14) with its ob-

served sample counterpart, the observed share of findings with |ti | > t̄ .

Selection bias, however, means that the observed sample counterpart of

Pr
(|t1| > t̄

)
is upward biased:

N∑
i=1

I
(|ti | > t̄ ∩Si

)
/Ns

p−→ Pr
(|t1| > t̄

)[Pr
(|t1| > t̄ |S1

)
Pr

(|t1| > t̄
) ]

︸ ︷︷ ︸
>1

.

The term in the square brackets is larger than 1 because publication selects for

large t-stats (Equation (4)). The trick is to offset the square bracket by multiplying�FDRnaive
(
t̄
)

with a penalty ĉ:

Proposition 1. Let the publication bias adjusted estimator be

�FDRadj ≡ ĉ�FDRnaive
(
t̄
)

(16)
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where ĉ is chosen to satisfy

plim
N−→∞

ĉ ≥ 1

Pr
(|t1| > tgood

) . (17)

Then for t̄ ≥ tgood, �FDRadj converges to an upper bound on the FDR

plim
N−→∞

�FDRadj ≥ FDR
(
t̄
)

. (18)

The proof is in Appendix A.2. Intuitively, the bias
Pr (|t1|>t̄ |S1)

Pr (|t1|>t̄) is close to the

ratio of observed t-stats to total t-stats. This ratio can be bounded if we assume,

conservatively, that only t-stats that exceed tgood are observed.

Notably, this FDR estimate does not depend on the total number of t-stats

N . This feature stands in contrast to the common intuition that more tests im-

ply more false discoveries, but is consistent with the FDR literature. In general,

the FDR depends on the distribution of t-statistics, while the total number of t-

statistics is in a way a nuisance parameter (for example, Genovese et al. (2006)).

Similar results are seen in more recent papers that use a similar statistical frame-

work to study publication bias (Andrews and Kasy (2019); Chen and Zimmer-

mann (2020)). Perhaps there is an economic reason for assuming that larger N

implies more false discoveries (decreasing returns to the production of predic-

tor ideas), but this kind of modeling cannot be addressed with multiple testing

statistics alone.

3.2. Implementation of Proposition 1

To implement Proposition 1, I need both t̂good (an estimate of tgood) and a

method for estimating a bound on Pr
(|t1| > t̂good

)
. I also need a choice for the

degrees of freedom parameter ν̂.

I select t̂good = 2.60. This choice can be motivated several ways.

1. 2.60 is more than half a standard error beyond the ubiquitous 5% threshold

for “statistical significance.” In this sense, t-stats that exceed 2.60 are more

than marginally significant.

2. 2.60 is close to the peak of the empirical t-stat distribution (see Figure 3).

While, publication bias clearly plays a role in the left shoulder before 2.60,

it seems less likely to play a role beyond that.
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3. 2.60 is very close to the HLZ’s choice of 2.57. In HLZ’s model with cor-

relations and the missing t-stat extrapolation in their Appendix (see also

Harvey (2017)), they assume that all |ti | > 2.57 are observed, implying that

there is little incremental publication bias beyond this value. HLZ seem

to choose 2.57 because this is the t-stat reported in Fama and MacBeth

(1973)’s Table III.

One may be tempted to selected t̂good > 2.60 to be conservative, but Proposition

1 is already a conservative estimate of the FDR. This estimate effectively assumes

that Pr (F1) = 1 and Pr
(
S1||t1| < tgood

)= 0. These assumptions overstate the rate

of false discoveries and the effect of selection, respectively. As a result, choosing a

larger t̂good would likely decrease power more than it would improve robustness.

Given my choice of t̂good = 2.60, I estimate a bound on Pr
(|t1| > t̂good

)
with

the following identifying assumption: I assume that the unbiased research pro-

cess (the first step in the model at the beginning of Section 2.2) is more likely to

generate |ti | > t̂ good than Yan and Zheng’s algorithm for forming long-short port-

folios from random combinations of accounting variables. A skeptical reader

may doubt the ability of finance theory to produce good predictors, but even

these readers would likely admit that adding common sense would not worsen

performance relative to randomly combining accounting variables.

Moreover, this method is also almost entirely non-parametric, and is easily

accessible. To implement this method, I simply look up values from YZ’s Table

1. I focus on the equal-weighted 1-factor α specification, as it is closest to the

simple long-short strategies studied in CZ. YZ’s Table 1 shows that the 10th and

95th percentile t-stats for this class of strategies are -3.48 and 3.19, respectively.

These values imply that Pr
(|t1| > t̂good = 2.60

) > 0.10+0.05 = 15%, and thus B̂ =
1/0.15 = 6.7 is a conservative way to satisfy the bound in Proposition 1.

Last, I calculate Pr
(|t1| > t̄ |F1

)
by assuming that t1|F1 (Equation (3)) follows a

student’s t-distribution with ν̂= 100 degrees of freedom. This can be considered

a conservative assumption, as the 10th percentile of the number of in-sample

months is 164 (Table 1), implying ν> 164 for 90% of predictors if monthly returns

are normally distributed.
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3.3. Results: Non-Parameteric FDRs

Table 2 shows the main result: FDRs upper bounds from applying Proposition

1 to the CZ data. The table examines several t-stat hurdles t̄ , ranging from 2.60

to 3.80. For a hurdle of 2.60, the FDR upper bound is only 10.2%. Since 70.7%

of CZ’s reproductions meet this hurdle, most claimed findings are highly likely to

be true.

[Table 2 about here]

The intuition can be found by breaking down the calculation in steps. First,

the naive FDR bound (Equation (15)) just divides the p-value for t̄ by the share of

observed findings that meet the hurdle t̄ . This results in a very small FDR bound,

as the p-value for a t-stat of 2.60 is only about 1%, and 70% of observed t-stats

exceed 2.60. The naive estimate ignores publication bias, which implies that we

should multiply the naive bound by a factor of 1/0.15 ≈ 6.7, corresponding to the

share of randomly generated strategies that have large t-stats. Still, the resulting

FDR bound is only 10.2%, since the p-value is so small to begin with.

Table 2 also shows that the FDR becomes negligible as the hurdle is raised

above 3.0. t̄ = 3.4 implies an FDR upper bound of 3.9%, and t̄ = 3.8 implies

an FDR of at most 0.4%. These results imply that predictors with |ti | > 3.8 are

almost certainly true predictors, consistent with Chen (2021)’s thought experi-

ments. This commonality likely steps from the fact that both analyses revolve

around comparing the thin tails of the null distribution to the very fat tails of the

empirical distribution.

3.4. Reconciliation with Harvey, Liu, and Zhu (2016)

Readers who know HLZ well may feel the numbers in Table 2 are eerily famil-

iar. The table shows that a hurdle of t̄ = 3.4 implies an FDR upper bound of 1.4%,

very close to HLZ’s Figure 3, which shows an FDR upper bound of 1% implies a

t-hurdle of about 3.4 percent. Indeed, in the text HLZ state an FDR upper bound

of 5% implies a t-hurdle of 2.78 based on the same method, also similar to the

numbers in Table 2. Strikingly, these numerical results are quite similar, despite

the fact that the methods appear to be quite different.

To understand the reconciliation, it helps to know how FDR estimation is

equivalent to t-hurdle estimation. This equivalence is known in the statistics lit-
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erature going back to Efron and Tibshirani (2002). But since FDR methods are

quite foreign to finance researchers, I restate the equivalence here, adapted to

nest BY.

I begin by defining the BY algorithm:

1. Sort the observed p-values from smallest to largest: p1 ≤ p2 ≤ ... ≤ pNs .

2. Find the cutoff p-value p∗ using

p∗ ≡ max
j

p j s.t. p j ≤ j

cBY Ns
q (19)

cBY ≡
(

Ns∑
k=1

1

k

)
(20)

where q is the desired FDR bound.

3. Reject the null hypotheses corresponding to p j if and only if p j ≤ p∗.

In a setting where there is no selection bias, BY prove this procedure implies an

FDR ≤ q .

Stated in this form, the BY algorithm is rather mysterious. It’s not at all clear

how this procedure leads to FDR control. The logic becomes clear, however, if

the BY algorithm is restated in terms of FDR estimation:

Lemma 1. Define |t̃1| ≥ |t̃2| ≥ ... ≥ |t̃Ns | as the observed absolute t-stats ordered

from largest to smallest. The BY algorithm is equivalent to choosing a t-hurdle t∗

that solves

t∗ ≡ min
j∈{1,...,Ns }

|t̃ j | s.t. �FDRBY
(
t̃ j

)≤ q

where

�FDRBY
(
t̃ j

)≡ cBY �FDRnaive
(
t̃ j

)
(21)

and

cBY ≡
(

Ns∑
k=1

1

k

)
(22)

is a “correlation penalty.”
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Proof. The constraint in the optimization (19) equivalent to

Pr
(|t1| > t̃ j |F1

)≤ ∑N
i=1 I

(|ti | ≥ t̃ j ∩Si
)

Ns

1

cBY
q,

since Pr
(|t1| > t̃ j |F1

)
is the p-value corresponding to t̃ j , and j is equal to the

number of observed t-stats that exceed t̃ j (see step 1 of the algorithm). Solving

for q on the RHS and plugging in Equation (15) leads to Equation (19).

The lemma shows that BY just uses cBY �FDRnaive
(
t̃ j

)
as an estimator for the

upper bound on the FDR and the empirical distribution of t-stats as an estimator

of the true distribution. If these are valid estimators (and regularity conditions

hold), then the plug-in principle implies that solving the minimization problem

finds the most generous t-hurdle that implies the FDR ≤ q . Under more restric-

tive dependence assumptions, BY prove that using cBY = 1 controls the FDR.

Thus cBY ≡
(∑Ns

k=1
1
k

)
À 1 can be thought of as a “correlation penalty.”

Comparing Equations (16) and (21), we see that my estimates and HLZ’s

Figure 3 differ only in the choice of the penalty term cBY vs ĉ. By sheer co-

incidence, these two penalties are quantitatively similar. HLZ use a dataset

of roughly 300 “factors,” implying Ns ≈ 300 and cBY ≡ ∑Ns
k=1

1
k ≈ 6.3. In con-

trast, I use the numbers available in Yan and Zheng (2017)’s Table 1, implying

ĉ ≡ 1
Pr

(|t1|>tgood
) ≤ 1

0.15 ≈ 6.7. There is no logic for why these two formulas should

lead to similar penalties—they just happen to lead to numbers close to 6.5.

Clearly one should include a publication bias penalty. But perhaps one

should also include a penalty for correlations? Using both could have profound

effects, as multiplying the numbers in Table 2 by a factor of 6 leads to FDR up-

per bounds as high as 60%, consistent with the idea that most findings are likely

false.

Arguing for the correlation penalty, HLZ state that the original Benjamini and

Hochberg (1995) algorithm is “only valid when the test statistics are indepen-

dent or positively dependent.” This statement, however, is not true. The cor-

rect statement omits “only”: independence or positive regression dependence

are sufficient conditions for the validity of Equation (19), but they are not nec-

essary (see Theorems 1.2 and 1.3 of BY). Indeed, Storey, Taylor and Siegmund

(2004) prove that the weak dependence conditions like those in Equations (6)-(8)

are sufficient, though they do so in a setting without publication bias. Intuitively,�FDRnaive
(
t̄
)

is just a method of moments estimator for the upper bound (14). For
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fixed t̄ , all that is needed is a weak law of large numbers, which does not require

independence.6

The fact that the correlation penalty is often not needed is noted in the origi-

nal paper (Benjamini and Yekutieli (2001)), which states “[o]bviously, as the main

thrust of this paper shows, the adjustment by
∑m

i=1
1
i ≈ log(m)+ 1

2 is very often

unneeded, and yields too conservative of a procedure.” Similarly, Efron (2012)

writes that Equation (22) “represents a severe penalty... ...and is not really neces-

sary.” Farcomeni (2007) provides a long list of technical conditions under which

this penalty is not necessary and Reiner-Benaim (2007) provides simutheoretical

results that demonstrate the same.7

Deep in their paper, HLZ acknowledge that the correlation penalty may be

“overly stringent” and offer an estimate that adjusts for publication bias while

omitting the correlation penalty. This estimate finds a hurdle of 3.05 implies an

FDR ≤ 5%, very similar to my estimates in Table 2 (page 24). HLZ express little

confidence in this estimate, however. They list it at the very end of their anal-

yses on Benjamini and Hochberg (1995) style controls, after they list estimates

that include only the correlation penalty and estimates that include both penal-

ties. Indeed, these estimates are not found in any exhibits in the paper, and the

estimation of the publication bias penalty is relegated to the appendix.

My analysis shows that, counterintuitively, the very last of HLZ’s many FDR

upper bound estimates are the ones that should be used. Moreover, one does not

need to rely on HLZ’s appendix for the publication bias adjustment. Proposition

1, along with Table 1 of Yan and Zheng (2017), are all that are needed. I also show

that the resulting t-hurdles imply that the FDR for most of the literature is quite

small.

Of course, one additional difference with HLZ is the interpretation. Based on

numbers very close to those in Table 2, HLZ “argue that most claimed research

findings in financial economics are likely false.” Instead, I claim that “most sta-

tistical findings in cross-sectional asset pricing are likely true.”

6As seen in Lemma 1, Benjamini and Hochberg (1995) requires a stochastic input to�FDRnaive (·), which then requires extending the law of large numbers and continuous mapping
theorem to empirical distribution functions. The details are quite technical (see Van der Vaart
2000), but these extensions are implicitly used whenever a sample median is used to estimate a
non-parameterized population median, or when one uses any plug-in estimate without a para-
metric model.

7For additional proofs, see Genovese, Roeder and Wasserman (2006), Ferreira and Zwinder-
man (2006). In Chris Genovese’s lecture slides on “A Tutorial on False Discovery Control,” he
writes “Practically speaking, BH is quite hard to break even beyond what [h]as been proven.”
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4. Semi-Parametric FDR Estimates

This section takes a closer look at the FDR estimates by adding a parametric

model of the unbiased t-stats. Though I model t-stats parametrically, I estimate

FDR bounds using non-parametric methods following Benjamini and Hochberg

(1995) and Storey (2002), so I call these estimates “semi-parametric.”

These semi-parametric estimates extend the findings in Section 2. Simula-

tions verify the theoretical assumptions and show that the BY correlation adjust-

ment is unnecessarily conservative (Section 4.2). Empirical estimates provide

the intuition behind the Yan-Zheng bound, and also show that the FDR that find-

ings in the CZ data are likely to be true overall (Section 4.3).

4.1. A Semi-Parametric FDR Estimator

The semi-parametric estimates build on the statistical framework in Section

2.2. On top of this framework, add the assumption that |t1| is drawn from a one

parameter distribution:

|t1| ∼ f (|t1||λ) , (23)

where f (·|λ) is a density function to be chosen, and λ is a parameter to be esti-

mated.

Importantly, Equation (23) regards only the marginal distribution of a single

t-stat. It thus makes minimal assumptions about correlations, the structure of

true returns, or any of the other issues brought up in more structured models (e.g.

Chen and Zimmermann (2020); Chen (2020)). Instead, I rely on the convergence

assumptions (Equations (6)-(8)), which I verify in simulations.

To estimate λ, note that the model implies

E
(|t1||S1, |t1| > tgood;λ

)= E
(|t1|||t1| > tgood;λ

)
, (24)

since the model implies that the selection probability s (|t1|) is constant for

|t1| > tgood.8 As the LHS is observed, this suggests a simple method of moments

8To see this, note that the distribution of |t1| conditional on S1 and |t1| > tgood is

f (|t1||λ) s (|t1|) ||t1|>tgood

Pr
(
S1 ∩|t1| > tgood|λ

) = f (|t1||λ) s̄

s̄Pr
(|t1| > tgood|λ

) = f
(|t1|||t1| > tgood,λ

)
.
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estimation in which the LHS is replaced with the sample counterpart. Though

I use only one moment, I find that estimations using the first two moments or

several quantiles lead to similar results. As in Section 3.2, I use t̂good = 2.60 when

applying Equation (24).

Given λ̂, I estimate a bound on the FDR using

�FDRsemi
(
t̄ ; λ̂

)≡ Pr
(|t1| > t̄ |F )

Pr
(|t1| > t̄ |λ̂) . (25)

where the subscript “semi” stands for semi-parametric. This estimator converges

to an upper bound on the FDR:

Pr
(|t1| > t̄ |F1

)
Pr

(|t1| > t̄ |λ̂) p−→ Pr
(|t1| > t̄ |F1

)
Pr

(|t1| > t̄ |λ)
= 1

Pr (F1)
FDR

(
t̄
)

≥ FDR
(
t̄
)

(26)

due to the law of large numbers, the continuous mapping theorem, and Equation

(12).

Unlike Proposition 1, Equation (26) is valid for t̄ < tgood, and thus can esti-

mate a conservative FDR for the entire cross-sectional predictability literature.

The price for this expanded inference is a reliance on assumptions, in particular

one needs to assume a form for f (·|λ).

I examine two choices for f (·|λ), an exponential, and a conservative gamma.

4.1.1. The exponential estimator

The first choice assumes f (·|λ) is an exponential distribution with scale λ.

This distribution fits the right tail of the data well, offers closed form estimation,

is conservative, and is the same distribution examined in HLZ’s Appendix A.1

(see also Harvey (2017)).

To motivate this assumption, Table 3 shows the mean |ti | in the CZ data con-

ditional on |ti | exceeding some cutoffs t̄ . The table shows that the conditional

mean increases by about 1.0 for every 1.0 increase in t̄—consistent with memo-

ryless property of an exponential distribution.9 Thus, the exponential assump-

So multiplying by |t1| and integrating leads to Equation (24).
9The memorylessness of the exponential distribution implies E

(|t1|||t1| > t̄
) = t̄ +λ if |t1| is
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tion should fit the data well, and offers a closed form estimator

λ̂= Ê
(|t1||S1, |t1| > t̂good

)− t̂good, (27)

where Ê
(|t1||S1, |t1| > t̂good

)
is the sample counterpart to the conditional expec-

tation.

[Table 3 about here]

The exponential distribution also offers a closed form expression for the FDR

bound. The bound is simply

�FDRsemi
(
t̄ ; λ̂

)= Pr
(|t1| > t̄ |F )

exp
(−t̄/λ̂

) ∝ exp

(
−1

2
t̄ 2

)
exp

(
1

λ̂
t̄

)

providing a quantitative intuition behind the FDR bound estimates. The

exp
(−1

2 t̄ 2
)

term decays much faster than the exp
(

1
λ̂

t̄
)

term, leading to a sharp

drop in the FDR bound as t̄ increases. How fast this decrease occurs is deter-

mined by the scale parameter λ̂.

Additionally, the exponential distribution is a conservative estimate in the

sense that it assumes the modal t-stat is zero. Thus, this assumption implies a

kind of worst case for the missing t-stats below 1.96.

4.1.2. A conservative gamma estimator

For robustness, I examine an even more conservative distributional assump-

tion. I assume f (·|λ) is a gamma distribution with shape < 1.0 and scale param-

eter λ offers a natural robustness check. The gamma distribution nests the ex-

ponential with shape = 1.0, and a smaller shape parameter implies a larger mode

near zero. The larger mode, in turn, implies a smaller value for Pr
(|t1| > t̄ |λ̂)

and

a larger �FDRsemi
(
t̄ ; λ̂

)
in Equation (25).

I choose a shape parameter of 0.5. This choice implies a skewness of 2/
p

0.5 =
2.8, about 1 unit larger than the skewness of the exponential assumption. We will

see that this assumption implies a very large spike in t-stats at zero.

exponential with scale parameter λ.
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4.2. Simulation Verification

An advantage of the semi-parametric estimates is that, unlike Proposition 1,

Equation (25) can be automatically implemented and adapted to any dataset. As

a result, I can check the validity of these estimates in simulated data, and check

that the convergence assumptions (6)-(8) hold.

To focus on these convergence assumptions, I design the simulation to fully

capture the empirical correlation structure, but otherwise make the simulation

as simple as possible.

4.2.1. Simulation Model

The simulation assumes there are strategies i = 1,2, ..., N and months t =
1,2, ...,T . Each strategy-month has a return

ri ,t =µi +εi ,t ,

where µi is the population mean return and εi ,t is a mean zero residual.

εi ,t is drawn by “extrapolating” from the empirical de-meaned long-short

returns. To construct these simulated residuals, let r̂ j ,τ be the return for pre-

dictor j in month τ in the balanced panel version of the empirical data (Table

1), with j = 1, ..., Ne and τ = 1,2, ...,Te . Define de-meaned empirical returns as

ê j ,τ = r̂ j ,τ−T −1
e

∑Te
τ′=1 r̂ j ,τ′ , then the simulated residual is constructed as

εi ,t = 0.9ê ĩ (i ),t̃ (t ) +0.1δi ,t (28)

where, ĩ (i ) is a random integer between 1 and Ne , t̃ (t ) is a random integer be-

tween 1 and Te , and δi ,t ∼ N (0,5) i.i.d. In other words, I cluster-bootstrap resid-

uals from empirical data, where the clustering preserves cross-sectional correla-

tions, but I mix in 10% random noise of volatility similar to the empirical data

(see Table 1).

Equation (28) is a simple way to address the problem of extrapolating an

observed Ne -dimensional distribution (with correlations) to a N−dimensional

distribution, where N À Ne . This approach ensures that the resulting distribu-

tion of pairwise correlations for εi ,t is close to the distribution of pairwise cor-

relations for ê j ,τ, while ensuring that εi ,t does not consist of copies of identical

strategies. Alternatively, one could extrapolate by parameterizing the distribu-

20



tion of correlations, but this would significantly complicate the simulation (e.g.,

Chen (2020)). For robustness, Appendix A.3 examines alternative extrapolations

including a pure cluster bootstrap without noise and a block-independent boot-

strap. Both of these alternatives lead to similar results.10

The population mean return µi takes on one of two values

µi =
0 with prob pF

γ with prob
(
1−pF

)
where γ is the mean return of true predictors and pF is the (unconditional) prob-

ability a predictor is false. t-stats are calculated the standard way

ti = r̄i

σi /
p

T
,

where the sample mean r̄i = T −1 ∑T
i=1 ri and sample volatility σi =√

T −1 ∑T
i=1

(
ri ,t − r̄i

)2 are also standard.

Strategies are selected as findings (the event Si occurs) according to a stair-

case function

Pr (Si ||ti |) =


0 |ti | < 1.96

smarginal |ti | ∈ (1.96, tgood]

s̄ |ti | > tgood

, (29)

where smarginal is the probability a marginal t-stat is selected, tgood is the hurdle

beyond which t-stats are no longer marginal, and s̄ is the maximum probability

of selection

Throughout the simulations, I set N = 10,000, T = 200, and s̄ = 1. I set s̄ = 1

for computational expedience. A smaller s̄ would lead to identical results with a

larger N .

4.2.2. Simulation Results

Before examining the simulated estimations, I first check that the simulated

correlations are close to the empirical data. Figure 1 makes this comparison. The

figure plots the distribution of pairwise correlations for εi ,t implied by the simu-

10Code for these alternatives can be found at https://github.com/chenandrewy/mostly-true.
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lation (solid) against the empirical distribution (dashed). The two distributions

line up very closely. This close match shows that the simulation effectively cap-

tures the dependence structure in the data, and provides a relevant test of the

crucial convergence assumptions (6)-(8).

[Figure 1 about here]

The simulated estimations are shown in Figure 2. The figure shows estimates

of the upper bound on the FDR (Equation (25)) compared to the actual FDR,

for various t-stat hurdles t̄ . Each panel shows the results of a different set of

parameter values. I examine four sets of parameters, intended to span the range

of realistic values.

[Figure 2 about here]

The top panels both examine a “moderate bias” setting, in which tgood = 2.60

and smarginal = 0.5. These parameters imply that predictors that fail to meet the

1% significance threshold are considered marginal, and that marginal predic-

tors are half as likely to be selected as predictors with |ti | > 2.60. I call this bias

moderate, as these parameter values are equivalent to the bias assumed in HLZ’s

“model with correlations.”

The top panels differ in the assumed magnitude of actual false discoveries.

Panel (a) assumes a “moderate FDR,” with pF = 0.50 and γ = 0.50. The moder-

ate FDR setting is chosen to be close to estimates from HLZ’s model with cor-

relations. Panel (b) assumes a “huge FDR,” with pF = 0.990 and γ = 0.250. This

second parameter set is chosen to imply the highest FDR possible while main-

taining good behavior of the simulation and the intuition that a monthly return

of γ< 0.25% is economically insignificant. The choice of 0.25% per month is mo-

tivated by the fact that 90 percent of CZ’s reproductions produce mean returns

that exceed 0.27% per month (Table 1).

Panels (a) and (b) show that the semi-parametric FDR estimates are quite

conservative. The exponential (line) and conservative (dashed) FDRs upper

bounds are far above the actual FDR (dotted) in both panels. Indeed, in the huge

FDR setting, The estimated FDR bounds remain above 50% for t̄ up to 5.0, though

the actual FDR has plummeted to zero past t̄ = 4.0. These results suggest that the

semi-parametric estimates are safe to use if one is especially concerned about

the worst case: a setting in which both pF is close to 1 and γ is close to 0.
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The bottom panels of Figure 2 examine a “extreme bias” setting, in which

tgood = 5.0 and smarginal = 0.25. This setting implies that predictors with a t-stat

above 5.0 are 4×more likely to be published than predictors with a t-stat between

2.0 and 5.0. Once again, I examine two choices for parameters that control the

FDR. Panel (c) assumes a moderate FDR (similar to HLZ’s estimates) while Panel

(d) assumes a huge FDR.

As in the top panels, the bottom panels show that the semi-parametric FDR

estimates consistently place an upper bound on the actual FDR. Overall, the FDR

bound estimates are somewhat lower than in the top panels, but they are rela-

tively unaffected by the extreme bias.

This robustness is likely because of the fact that the student’s t-distribution

decays extremely quickly for values larger than 2.0. In the large degrees of free-

dom limit, this decay is a exponential-quadratic. As a result, even if t-stats of 5.0

are 4-times more likely to be published, the decay in the right tail of the observed

distribution is still quantitatively similar to the full distribution.

An interesting result of these simulations is that it is quite difficult to create

a realistic simulation that implies an actual FDR > 50% for t-stat hurdles of 3.0

or more. Even if 99% of predictors are false and the true predictors have mean

returns of only 25 bps per month, one still finds that a t-stat hurdle of 3.0 is suffi-

cient to imply that most discoveries are true. Appendix A.3 shows that changing

the bootstrap to consist of independent blocks can lead to an FDR of 75% for a

t-stat hurdle of 3.0, suggesting that some of these limits are due to the negative

correlations in the data. These results are reminiscent of Chen (2021)’s thought

experiments and suggest an alternative argument for the idea that most findings

are true, though a formal demonstration is beyond the scope of this paper.

4.3. Empirical Results

Having verified that the estimator works, I now show the empirical estimates.

Figure 3 begins by showing how the parametric component fits the empirical

t-stats. The top panel shows the distribution implied by the exponential estima-

tor. As expected, the exponential assumption (line) fits the right tail of the data

(bars) very well. Consistent with HLZ and Harvey (2017), the estimated λ̂= 2.12

is right in the middle of HLZ’s estimates of between 1.93 and 2.22. This estimate

implies that Pr
(|t1| > t̂good

) = exp(−2.6/2.12) = 29%, consistent with the lower
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bound of 15% implied by the Yan-Zheng data (Section 3.2). Indeed, this estimate

suggests that the non-parametric estimates are too conservative by a factor of

roughly 2.

[Figure 3 about here]

Panel (b) shows the fit of the conservative gamma estimator. The fit implies

a very large mass of t-stats near zero. Indeed, the density near zero is so large

that it is difficult to see the data (bars) in the same scale. This model implies

Pr
(|t1| > t̂good

) = 15.6%, similar to the Yan-Zheng bound. Thus, Panel (b) offers

one interpretation of the Yan-Zheng bound (assuming that it is binding).

In both panels of Figure 3, the models fit the published data well. Despite

the strong fit, the panels show very different implications for the distribution of

t-stats, consistent with Chen (2020)’s finding that t-stat hurdles are weakly iden-

tified in a setting with publication bias. However, unlike in Chen (2020) (and

HLZ’s model with correlations), the estimators in this paper aim only to place an

upper bound on the FDR. I do not attempt to estimate Pr (F1), nor do I try to find

a point estimate of the FDR. Moreover, by bringing in external data in the form

of the Yan-Zheng strategies, I place intuitive limits on these upper bounds.

Having shown the model fits, Figure 4 shows the key implications: estimated

FDR upper bounds. The figure plots the exponential (line) and conservative (dot-

ted) upper bounds along with the non-parametric estimate (dashed) for compar-

ison. The non-parametric estimate ends at t̄ = 2.60 (vertical line) as Proposition

1 is only valid to the right of this line. The semi-parametric estimates, then, ex-

tend the FDR upper bounds to smaller t-stat hurdles.

[Figure 4 about here]

Both estimators imply that predictors with |ti | > 2.0 have FDRs of at most

25%. That is, predictors that meet the traditional hurdle are at least 75% likely to

be true. As a consequence, if one is willing to believe the model fits in Figure 3 (or

Harvey (2017)’s Figure 1), then one should believe that not only are most claimed

statistical findings likely true, but that most claimed findings are true. Indeed,

the exponential estimate, which offers a more natural fit to the data, implies that

at least 88% of traditionally-significant predictors are likely to be true.

To emphasize this point, Table 4 shows FDR upper bound estimates for vari-

ous hurdle t̄ , along with the share of CZ’s reproductions that meet t̄ . 88% of CZ’s
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reproductions meet the traditional hurdle of t̄ =2.0, and the FDR estimates imply

that at least 68% of these predictors are true. Lowering t̄ to 1.60 includes 95% of

CZ’s reproductions, but even for this low bar the estimators still imply that most

predictors are true, with the exponential estimate implying that at least 75% of

these predictors are true. Even if the remaining 5% of predictors are classified as

false discoveries (these are arguably failed reproductions), these numbers imply

that the majority of claimed findings are true.

[Table 4 about here]

5. Conclusion

I revisit the conflicting findings in HLZ. Though HLZ argue that most claimed

research findings are false, their numerical estimates imply that most statistical

findings are true.

I verify HLZ’s primary numerical findings, though this verification is due to

offsetting effects. HLZ’s use of the Benjamini and Yekutieli (2001) correlation

penalty is unnecessarily conservative, but this penalty happens to be similar in

size to a publication bias penalty that is not used in HLZ’s main figure. Excluding

the correlation penalty and including the publication bias penalty results in an

FDR of at most 10% for the 70% of predictors that meet the t-stat hurdle of 2.6. I

verify in simulations that these estimates are valid for the type of dependence we

find in predictor data.

I also provide simple, closed-form expressions for FDR bounds that are valid

under publication bias. These expressions provide the intuition behind more

complicated estimations that find similar results (e.g. Chen (2020)). In short, the

FDR in the literature is small because even trading on random accounting-based

strategies leads to large t-stats with some regularity.

An important caveat is that my study does not examine trading costs, nor

does it examine whether the statistical tests satisfactorily address the research

claims in the original papers. Thus, HLZ’s argument that most claimed research

findings are false may still be correct. However, verifying this claim seems to be

outside of the realm of multiple testing statistics.
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A. Appendix

A.1. A “Microfoundation” for the two-step selection model

[TBC]

Probability of selection depends simultaneously on both t-stat t and a signal

θ in the following form

P (S|t ,θ) = g (t )h (θ)

t =µ+ε

θ =µ+δ

ε∼ fnull

This form means we can interpret g (t ) and h (θ) as probabilities. Define events

St and Sθ such that

P (Sθ|θ) = h (θ)

P (St |t ,Sθ) = s (t )

then I can rewrite P (S|t ,θ) as

P (S|t ,θ) = P (St )P (Sθ) ,

Assuming that θ and ε are independent, then

P (ε|Sθ) ∼ fnull

and as a result, t |Sθ is unbiased in the sense that

t |Sθ,µ= 0 ∼ fnull.

Thus, we can think of the first step in Section 2.2 as the t-stats conditional on the

event Sθ. Then if both Sθ and St occur, the predictor is selected, and we have in
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general

t |Sθ,St ,µ= 0� fnull

A.2. Proofs

Proof of Proposition 1

Proof. For t̄ > tgood, Pr
(|t1| > t̄ |S1

)= s̄Pr
(|t1| > t̄

)
/Pr (S1). Thus,

Pr
(|t1| > t̄ |S1

)
Pr

(|t1| > t̄
) = s̄

Pr (S1)

= s̄

Pr
(
S1 ∩|t1| < tgood

)+ s̄Pr
(|t1| > tgood

)
≤ 1

Pr
(|t1| > tgood

) .

Thus,

plim
N−→∞

[
ĉ�FDRnaive

(
t̄
)]= 1

Pr
(|t1| > tgood

) Pr
(|t1| > t̄ |F1

)
Pr

(|t1| > t̄
) [

Pr
(|t1| > t̄ |S1

)
Pr

(|t1| > t̄
) ]−1

≥ Pr
(|t1| > t̄ |F1

)
Pr

(|t1| > t̄
) ≥ FDR

(
t̄
)

.

A.3. Alternative Simulation Results

[TBC]
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Figure A.1: Estimations on an Alternative Simulation

I follow the caption in Figure 2, but draw residuals εi ,t in independent blocks
from the empirical residuals ê j ,τ, instead of following Equation (28). Interpreta-
tion: The FDR bounds are robust to this alternative correlation structure. Cor-
relations closer to zero seem to allow for larger actual FDRs compared to the
empirically-motivated correlations in Figure 2.
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(c) Extreme Bias, Moderate FDR
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Figure 1: Simulated Correlations

I simulate monthly long-short return residuals by mixing a cluster-bootstrap
of de-meaned returns from the CZ data with noise (εi ,t in Equation (28)) with
N = 10,000 and T = 200. The residuals use balanced panel data for simplicity
(see Table 1). I then plot the distribution of pairwise correlations (solid) and
compare with the distribution from the CZ data (dashed). Interpretation: The
cluster bootstrap simulation mimics empirical correlations well.
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Figure 2: Estimations on Simulated Data

I simulate models of biased predictability findings (Section 4.2.1) and apply the
semi-parametric FDR estimators (Section 4.1). All estimates use t̂good = 2.6. All
models use N = 10,000, T = 200. ”Moderate Bias” is tgood = 2.6, smarg = 0.50;
“Extreme Bias” is tgood = 5.0, smarg = 0.25; ”Moderate FDR” is pF = 0.5, γ = 0.5;
and “Extreme FDR” is pF = 0.99, γ = 0.25. Moderate parameter values are close
to HLZ’s values, and the other parameters are intended to span the range of rea-
sonable values. Panels show the average FDR across 200 simulations. Interpre-
tation: The semi-parametric estimators consistently place an upper bound on
the actual FDR, even in simulations with huge FDRs or with an extreme amount
of publication bias.
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(b) Moderate Bias, Extreme FDR
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(c) Extreme Bias, Moderate FDR
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(d) Extreme Bias, Extreme FDR
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Figure 3: Semi-Parametric Model Fits

I apply semi-parametric FDR upper bound estimators (Equation (25)) to predic-
tors from Chen and Zimmermann (Forthcoming). Panel (a) assumes unbiased
t-stats follow an exponential distribution, as in HLZ. Panel (b) assumes a gamma
distribution with shape parameter 1/2. Figures compare the distribution of un-
biased t-stats (lines) to the published data (bars). All densities are normalized
so that Pr (|t1| > 2.6) = 1 for ease of comparison. Interpretation: The exponen-
tial estimate implies about 30% of |ti | > 2.6, consistent with the Yan-Zheng lower
bound of 15%. The conservative estimate implies a huge spike in |ti | near zero
and 16% of |ti | > 2.6. Both estimates fit the data well for |t1| > 2.6.
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Figure 4: Semi-Parameteric FDR estimates

I apply semi-parametric FDR upper bound estimators (Section 4.1) to predictors
from Chen and Zimmermann (Forthcoming). “Exponential” assumes unbiased
t-stats follow an exponential distribution, as in HLZ. “Conservative” assumes a
gamma distribution with shape parameter 1/2. The non-parametric estimates
are shown for comparison, though these are missing below t̄ = 2.60 because
these estimates are not valid in this range (Proposition 1). Interpretation: Most
predictors with |ti | > 2.0 are true. The figure provides a visualization of the Table
4, for ease of comparison with the simulations (Figure 2).
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Table 1: Summary statistics for published cross-sectional predictors

Data comes from the Chen-Zimmermann (2020) open-source reproduc-
tions of 205 cross-sectional predictors with code and data available at
www.openassetpricing.com. I use the “original paper” data, which forms long-
short portfolios based on the instructions in the original papers. |ti | = |[mean
return]|/[volatility]×p[number of months]. These 205 predictors are selected by
Chen and Zimmermann to be likely to produce t-stats > 1.96 in long-short portfo-
lios based on results in the original papers, and are signed to have positive mean
returns based on the original results. All statistics use the original sample peri-
ods, except for “Balanced Panel,” which begins with all time periods, then limits
the months to those with more than 150 predictors, and also requires predictors
which have at least 200 months of data before imposing complete cases at the
month-predictor level. Interpretation: The t-statistics shown here will be used
to infer FDRs for the cross-sectional literature. The majority of these t-stats ex-
ceed 2.60. Correlations cluster around zero, in contrast to the common belief
that there is a strong factor structure.

Percentile
10 20 30 40 50 60 70 80 90

Univariate Statistics
|ti | 1.92 2.31 2.61 2.95 3.29 3.78 4.38 5.27 6.39
Mean Return (%) 0.27 0.33 0.40 0.50 0.56 0.66 0.79 1.00 1.30
Volatility (%) 1.50 1.89 2.31 2.57 2.98 3.38 3.91 4.43 5.68
Num of Months 164 209 252 288 336 384 454 468 528

Pairwise Correlations
Overlapping In-Sample −0.25 −0.13 −0.06 −0.01 0.04 0.08 0.14 0.22 0.36
Balanced Panel −0.55 −0.34 −0.17 −0.04 0.09 0.21 0.34 0.50 0.68
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Table 2: Non-Parametric FDR Upper Bound Estimates

I estimate publication bias adjusted FDR upper bounds (Proposition 1) for the
Chen-Zimmermann dataset of published predictors. The FDR bounds are de-
fined as

Naive FDR Bound ≡ p-value for t̄

Share of Findings w/ |ti | > t̄

Bias-Adjusted FDR Bound ≡ 1

0.15
[Naive FDR Bound],

where p-values are computed from 2-sided t-tests with ν = 100, and 0.15 is a
lower bound on Pr (|t1| > 2.6) that comes from assuming the unbiased research
process is more effective at drawing large t-stats than Yan and Zheng’s (2017)
algorithm for generating strategies from random Compustat variables. Interpre-
tation: For 70% of published predictors, the FDR is at most 10%. Thus, most
claimed statistical findings in cross-sectional predictability are likely true. For
t-stats above 4.0, the FDR is negligible, consistent with Chen (2021)’s thought ex-
periments.

t-hurdle t̄
2.60 3.00 3.40 3.80

p-value for t̄ (%) 1.1 0.3 0.1 0.0
Share of Findings w/ |ti | > t̄ (%) 70.7 58.0 46.8 39.0
Naive FDR Bound (%) 1.5 0.6 0.2 0.1
Bias-Adjusted FDR Bound (%) 10.2 3.9 1.4 0.4
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Table 3: Conditional mean t-stat and estimation of exponential |t1|
Table shows the mean |ti | conditioning on predictors having |ti | that ex-
ceed various t-stat hurdles t̄ . Data is the CZ predictors. Implied exponen-
tial λ̂ = [Mean |ti | for |ti | > t̄ ] − t̄ (implied by Equation (27)). Interpretation:
Mean |ti | for |ti | > t̄ increases by roughly 1.0 with every 1.0 increase in t̄ , con-
sistent with the memoryless property of the exponential distribution. Thus, the
exponential model provides a good fit to the data as well as a transparent estima-
tion. The scale parameter λ̂ is estimated to be about 2.1 if one chooses a hurdle
between 2.0 and 5.0.

t-stat cutoff t̄
2.0 3.0 4.0 5.0 6.0

Mean |ti | for |ti | > t̂good 4.2 5.1 6.2 7.1 8.6
Implied exponential λ̂ 2.2 2.1 2.2 2.1 2.6
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Table 4: Semi-Parametric FDR Upper Bound Estimates

I apply semi-parametric FDR upper bound estimators (Equation (25)) to predic-
tors from Chen and Zimmermann (Forthcoming). “Exponential” assumes un-
biased t-stats follow an exponential distribution, as in HLZ. “Conservative” as-
sumes a gamma distribution with shape parameter 1/2. The non-parametric es-
timates are shown for comparison for t̄ ≥ 2.60 (the range in which Proposition
1 applies). Interpretation: The exponential estimate implies that at least 70%
of claimed findings are true. Even the conservative estimate implies that most
claimed statistical findings are true.

t̄ Share of |ti | > t̄

FDR Upper Bound for |ti | > t̄
Semi-Parametric Non-Parametric

Exponential Conservative (for t̄ > 2.60)

1.60 94.6 24.0 42.4
1.80 91.7 17.5 31.4
2.00 88.3 12.4 22.5
2.20 83.4 8.5 15.7
2.40 77.1 5.7 10.5
2.60 70.7 3.7 6.9 9.4
2.80 63.9 2.3 4.3 5.9
3.00 58.0 1.4 2.7 3.5
3.20 51.7 0.8 1.6 2.1
3.40 46.8 0.5 0.9 1.2
3.60 43.4 0.3 0.5 0.6
3.80 39.0 0.1 0.3 0.3
4.00 36.1 0.1 0.2 0.2
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