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What Can Analysts Learn from Artificial Intelligence about 

Fundamental Analysis? 

 

Abstract 

We use machine learning to estimate Nissim and Penman’s (2001) (NP) structural framework that 

decomposes profitability into four levels of increasingly disaggregated profitability drivers. Our 

analysis has two distinct features: first we apply machine learning to accommodate the 

nonlinearities that precluded NP from estimating their framework, and second we analyze the 

financial statement design choices discussed but not analyzed in NP to provide insights for the 

teaching and practice of fundamental analysis. We find that out-of-sample profitability forecasts 

obtained by applying machine learning to NP’s framework are more accurate than those derived 

from a random walk and linear estimation, and that investing strategies based on intrinsic values 

generated from our profitability forecasts yield risk-adjusted returns. With respect to insights for 

fundamental analysis, we find that focusing on operating activities, core items and five-year-

horizon forecasts improves performance while using a long time series of past information impairs 

performance. We find mixed evidence of benefits from increasingly granular disaggregation of 

profitability. The benefits of greater model complexity and nonlinear estimation are pronounced 

for firms with extreme profitability levels and during the beginning and the end of firms’ lifecycles. 

 

JEL Classification: C53, G10, M41 

Keywords: Financial Statement Analysis, Machine Learning, Earnings Forecasting 
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1. Introduction 

We combine the capabilities of machine learning, a subfield of artificial intelligence, with 

Nissim and Penman’s (hereafter NP, 2001) hierarchical approach to financial statement analysis 

to estimate and analyze their nonlinear structural model of accounting profitability. 1  The 

hierarchical-modeling approach to profitability analysis is foundational in, for example, Penman 

(2012), Palepu and Healy (2012), Wahlen, Baginski, and Bradshaw (2018), Yohn (2020), and 

Sommers, Easton, and Drake (2021). We first use machine learning to estimate NP’s framework 

and forecast profitability, then use the forecasts to estimate intrinsic values and, finally, compare 

those values to market prices. To provide insights for the teaching and practice of fundamental 

analysis, we analyze the effects of financial statement analysis design choices discussed but not 

analyzed in NP and provide descriptive analyses of firm characteristics associated with better 

accuracy of profitability forecasts from nonlinear, machine learning estimation of NP’s model as 

compared to random walk forecasts and forecasts from linear (OLS) estimation.  

In using machine learning to estimate complex nonlinear relations between the predictors 

in NP’s structural model and future earnings, we start with a theoretically grounded, and therefore 

intentionally restricted, information set and apply machine learning to find the functional form that 

uses this information most effectively. While restricting the information set might sacrifice an 

unknown amount of predictive ability, such a structural approach 1) allows us to provide insights 

into the choices analysts and equity investors must make in applying NP’s framework and 2) can 

outperform in out-of-sample tests data mining approaches applied without a framework to very 

large sets of predictors (Bertomeu, Cheynel, Liao, and Milone 2021; Liu 2021). Regardless of 

                                                 
1 Using machine learning algorithms requires a number of design choices. We describe our design choices in an online 

appendix. 
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whether theoretically grounded models such as NP’s do, or do not, perform out-of-sample as well 

as or better than data-mining models, the advantages of theoretical models that incorporate the 

firm’s underlying profitability structure are numerous, including interpretability (Nissim 2021), a 

reduced risk of overlooking value-relevant information in distorted accounting numbers (Sloan 

2019), and a degree of protection from fluctuations in accounting numbers induced by the reporting 

process (Penman 2010, Chapters 4 & 5). Furthermore, the theoretical structure facilitates 

systematic analysis of the effects of variation in design choices, for example, discarding versus 

including transitory/non-core items and the granularity of profitability driver disaggregation. 

We first confirm many of NP’s findings for their sample period (1963–1999) for our longer 

sample period (1963–2019). We show that current-period ratios are individually and interactively 

associated with current and future profitability in nonlinear ways, including S-shaped, U-shaped, 

and concave patterns. These relations are visible at least 10 years into the future and attenuate over 

time. Having confirmed the nonlinearities discussed by NP for our sample, we use neural networks 

to estimate the nonlinear relations of NP’s framework and forecast future profitability. 

Building on Gerakos and Gramacy (2013) and Li and Mohanram (2014), we benchmark 1- 

to 10-year-ahead out-of-sample profitability forecasts against forecasts derived from a random 

walk and linear (OLS) estimation, and generally find the neural-network-based predictions are 

more accurate. Median absolute ROCE forecast errors of neural network models are approximately 

1.2% (10%) lower than those of random walk (OLS) forecasts, a substantial difference as 

compared to improvements documented in prior research (Fairfield, Sweeney, and Yohn 1996; 

Fairfield and Yohn 2001; Esplin, Hewitt, Plumlee, and Yohn 2014). This finding is significant 

given Gerakos and Gramacy’s (2013) and Li and Mohanram’s (2014) results that a simple random 

walk outperforms linear models including multiple predictors and Monahan’s (2018) related 
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analysis.2 We document that forecast accuracy improves with greater disaggregation for RNOA 

forecasts and with a focus on core items for ROCE forecasts. In additional analysis we find that, 

relative to linear estimation, accommodating nonlinearities improves accuracy the most for 

shorter-horizon forecasts based on higher levels of disaggregation. Cross-sectional analyses of 

forecast accuracy support two inferences. First, the benefits of nonlinear estimation are pervasive, 

not concentrated in subsamples of firms for which forecasting is particularly difficult. Second, the 

benefits of higher model complexity (i.e., greater disaggregation, focusing on core items, and using 

more historical information) and nonlinear estimation are pronounced for firms with extreme 

profitability levels and during the beginning and the end of firms’ lifecycles. 

Next, taking the perspective of an equity investor who makes investment decisions using 

financial statement analysis and strives to maximize risk-adjusted returns, we analyze whether 

hypothetical trading based on intrinsic value estimates derived from our neural network forecasts 

generates risk-adjusted returns. Black (1986) argues that noise trading causes short-run divergence 

while information-based trading causes long-run convergence between prices and value. The more 

price diverges from value, the larger the reward for information-based trading; the implication is 

that profitable trades are based on models that produce a less noisy estimate of value and help 

detect divergence of value from price. We use alpha to measure risk-adjusted returns so that we 

can compare models of different scales, an important consideration in evaluating the relative 

performance of RNOA-based and ROCE-based models. We estimate alpha for each of 192 

                                                 
2 Monahan (2018) describes the finding that a simple random walk outperforms linear models including multiple 

predictors as “a provocative result because it leads to the seemingly absurd conclusion that, within the context of 

forecasting earnings, there is no value to peer analysis, trend analysis and using conditioning information” (p. 146). 

Further, “the random-walk model is inconsistent with standard economic assumptions, accounting practice and the 

manner in which financial statement analysis is practiced and taught … if the random-walk model is the best academics 

can do, the relevance of the entire literature on forecasting and financial statement analysis is called into question” (p. 

205). 
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valuation models derived from combinations of five financial statement analysis design choices in 

NP’s framework. Hedge portfolios formed based on the value-to-price ratio obtained from neural 

network estimation of NP’s framework achieve an alpha of up to 9.89% annually, which compares 

favorably to excess return estimates reported in previous research (e.g., Piotroski 2000). We find 

that alphas increase with a focus on operating activities and are highest for a forecast horizon of 

five years.  

To address the possibility that positions taken by the best-performing models concentrate 

in small, illiquid, costly-to-trade stocks, we use only NYSE/AMEX firms and value-weighted 

portfolio returns. Further, a plot of cumulative abnormal buy-and-hold returns for the short and 

long portfolios shows that hedge portfolio performance derives from a widening spread, not from 

excessively negative performance of the short portfolio. This evidence indicates the returns we 

document are not linked to features of the trading environment or to short positions. 

 Our research contributes to two literatures. The first is the structural earnings forecasting 

literature that tests whether forecasting models grounded in accounting-based valuation models 

such as NP’s yield more accurate out-of-sample forecasts as compared to simpler, possibly 

atheoretical models. Fairfield et al. (1996) find that the income statement disaggregation scheme 

prescribed by the accounting profession (i.e., disaggregating net income into operating income, 

non-operating income, income taxes, special items, and income from discontinued operations) 

improves forecast accuracy over simpler models. Similarly, examining individual ratio 

disaggregation levels in NP’s framework, Fairfield and Yohn (2001), Soliman (2008), and Esplin 

et al. (2014) find that disaggregating RNOA into turnovers and margins and disaggregating ROE 

into RNOA and the financial leverage effect improves earnings prediction. These researchers did 

not estimate NP’s model (or another nonlinear structural model). Instead, they analyzed portions 
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of the model or applied linear approximations or both; the existence of this research speaks to the 

importance both of NP’s structural model as a framework for analyzing profitability and of 

estimating and analyzing the model holistically, including its nonlinear structure.  

We contribute to the structural earnings forecasting literature in three related and distinct 

ways. First, as argued and demonstrated by NP, evaluating their model necessitates 

accommodating its essential nonlinear structure. Given the technology available at the time, 

previous research evaluating NP’s model approximates these nonlinearities via linear estimation. 

By using machine learning to estimate NP’s model, we extend prior research, document substantial 

improvements over linear estimators, and highlight both the parts of NP’s model and the types of 

firms for which consideration of nonlinearities matters most. Second, while prior research uses 

linear estimation to evaluate components of NP’s model, we evaluate the model as a whole. This 

holistic analysis is essential for deriving implications for financial statement analysis practice by 

linking performance improvements to variation in specific financial statement analysis design 

choices, holding other design choices constant. Third, to the best of our knowledge, we are the 

first to examine how focusing on operating activities and core items, extending the forecast 

horizon, and using more past information affect forecasting performance within NP’s framework. 

 The second literature we contribute to tests whether machine learning techniques can be 

used to increase earnings forecast accuracy, and if so, how best to exploit these techniques in 

varying contexts. While Callen, Kwan, Yip, and Yuan (1996) fail to find evidence that machine 

learning improves firm-level time-series earnings forecasting models, more recent research, for 

example, Gerakos and Gramacy (2013), Hunt, Myers, and Myers (2019), Anand, Brunner, Ikegwu, 

and Sougiannis (2020), van Binsbergen, Han, and Lopez-Lira (2020), Cao and You (2020), and 

Chen, Cho, Dou, and Lev (2022) documents improvements for panel data models. The predictor 
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selection in these papers is purely empirical and atheoretical, a data-mining-style approach that 

NP describe as “trawling through the data without structure” (p. 125). These papers exploit the 

strengths of machine learning for processing high-dimensionality data sets and arbitrary 

nonlinearities among very large sets of predictors while avoiding (or at least mitigating) overfitting 

by applying regularization. They do not, by design, estimate a structural model such as NP’s. 

From the perspective of providing insights for teaching and practical applications, a purely 

empirical, atheoretical approach has two interrelated weaknesses that our approach, grounded in 

NP’s structural model, addresses. First, in accounting settings, where double-entry bookkeeping 

creates collinear variables, unstructured data-mining approaches can produce good predictive 

performance at the cost of counterintuitive and even uninterpretable results (e.g., Armstrong 

(2001) and Bertomeu (2020)).3 While predictive power is in and of itself highly desirable in 

practice, teaching and future research must rest on an understanding of the variables that drive the 

predictive power. A purely empirical, atheoretical approach to understanding these causal effects 

evaluates how removing one variable at a time affects prediction accuracy (e.g., Chen et al. 2022). 

However, the results of removing one variable at a time from a set of collinear predictor variables 

are often uninterpretable (for example, predictions will hardly change if common equity is dropped 

from a predictor set that also includes assets and liabilities). While it is easy to see the problem in 

a simple example, combining an atheoretical approach with a nonlinear algorithm like a neural 

network can make it impossible for a researcher to determine the incremental value of any one 

variable because the actual degree of collinearity is unknown. While we too iteratively remove 

variables, our approach does not suffer from the same interpretability problem because NP’s 

                                                 
3 For example, applying an atheoretical approach, Chen et al. (2022) find that the two most important predictors for 

the sign of future earnings changes are last year’s accumulated deficit and the percent change in current liabilities. 
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hierarchical theoretical structure creates well-defined reference groups based on the level of 

disaggregation. That is, the variables in the level 2 disaggregation are incremental to those in level 

1, the variables in level 3 are incremental to those in level 2, and so on. This clear reference group 

structure supports sharp insights for practice and teaching as to how best to use the NP framework. 

A second and related weakness, specifically applicable in our setting, is that using machine 

learning methods in an atheoretical and unstructured data-mining approach does not readily lend 

itself to the systematic analysis of financial statement analysis design choices, including those 

discussed but not analyzed by NP. This analysis is a key feature of our investigations. 

2. Methodology 

2.1 Structural Accounting–Based Valuation Models and Financial Statement Analysis 

Design Choices 

Structural accounting-based valuation models express a firm’s equity value as a function 

of expected accounting outcomes. Manipulating the definition of an expected return (𝜌𝑤 = (V𝑡
𝐸 +

D𝑡)/V𝑡−1
𝐸 )  under the assumptions of constant expected returns and terminal convergence 

( 𝑙𝑖𝑚𝑇→∞ V𝑡+𝑇
𝐸 /𝜌𝑤

𝑇 = 0) yields the discounted dividend model V0
𝐸 = ∑ D𝑡

𝑇
𝑡=1 /𝜌𝑤

𝑡 , where 𝜌𝑤 

denotes the (constant) expected or required return to common equity, V𝐸 denotes value to equity 

holders, D denotes dividends, and all variables in periods after 𝑡 denote expected outcomes. In 

practice, most analysts predict accounting earnings, not dividends which are discretionary. Using 

the clean surplus relation CSE𝑡 = CSE𝑡−1 + CNI𝑡 − D𝑡 and an additional terminal convergence 

condition (𝑙𝑖𝑚𝑇→∞ CSE𝑡+𝑇/𝜌𝑇 = 0), we reformulate the discounted dividend model into the 

residual income model V0
𝐸 = CSE0 + ∑ RE𝑡

𝑇
𝑡=1 /𝜌𝑤

𝑡 , where CSE denotes the book value of 

shareholders’ equity, CNI comprehensive income, and RE𝑡 = CNI𝑡 − CSE𝑡−1 × (𝜌𝑤 − 1) 
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residual income (Preinreich 1938; Edwards and Bell 1961; Ohlson 1995).4  

The residual income model links value to expected accounting outcomes without providing 

guidance for forecasting those outcomes.5 NP’s framework provides a solution by decomposing 

residual income into profitability drivers and relating past to future drivers. In Subsections 2.1.1 

through 2.1.5, we discuss how NP’s structural framework supports residual income valuation 

through profitability analysis and explain our approach to investigating five financial statement 

analysis design choices on which theory is silent. In applying NP’s framework, an analyst must 

make these choices on empirical, not theoretical grounds; we provide evidence to inform those 

choices.   

2.1.1 Level of Disaggregation 

NP’s structural framework is agnostic about the functional form of the residual income 

process; instead, it disaggregates residual income into its drivers and relates past to future drivers 

empirically. Specifically,  RE = (ROCE − 𝜌𝑤 + 1) × CSE𝑡−1 , where ROCE (= CNI/CSE) 

denotes return on common equity, yielding a ratio-based formulation of the residual income 

valuation model: 

V0
𝐸 = CSE0 + ∑ (∞

𝑡=1 ROCE − 𝜌𝑤 + 1) × CSE𝑡−1 × 𝜌𝑤
−𝑡. (1) 

Ratios and income statement accounts without subscripts denote period t amounts. Figure 

1 decomposes ROCE into four levels of increasing granularity/disaggregation: 

Level 1: ROCE = ROTCE × MSR: ROTCE denotes return on total common equity (= (CNI + 

MII)/(CSE + MI)), MSR minority sharing ratio (= 
CNI/(CNI + MII)

CSE/(CSE + MI)
), MII minority (noncontrolling) 

                                                 
4 Both US GAAP and IFRS require firms to display comprehensive income, which satisfies the clean surplus relation. 
5  While Ohlson (1995) assumes residual income is linked linearly through time to derive further theoretical 

implications, Dechow, Hutton, and Sloan (1999) do not find evidence supporting this assumption in annual US data. 
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interest income, and MI minority (noncontrolling) interest. 

Level 2: ROTCE = RNOA + FLEV × SPREAD: RNOA denotes return on net operating assets (= 

OI/NOA), FLEV financial leverage (= NFO/CSE), SPREAD the spread between RNOA and net 

borrowing cost (= RNOA − NBC), OI operating income, NOA net operating assets (= OA − OL), 

NFO net financial obligations (= FO − FA), OA operating assets, OL operating liabilities, FO 

financial obligations, FA financial assets, NBC net borrowing cost (= NFE/NFO), and NFE net 

financial expense. 

Level 3: RNOA = Sales PM × ATO + Other items/NOA: Sales PM denotes sales profit margin (= 

OI from Sales/Sales) and ATO asset turnover (= Sales/NOA). 

Level 4: Sales PM × ATO = Sales PM* × ATO* + OLLEV × OLSPREAD: Sales PM∗ denotes 

modified profit margin after considering implicit charges on supplier credit (= (Core OI from Sales 

+ io)/Sales), ATO∗ modified asset turnover (= Sales/OA), OLLEV operating liability leverage (= 

OL/NOA), OLSPREAD the spread between return on operating assets and the implicit interest on 

operating liabilities (= (OI + io)/OA − io/OL), and io the implicit interest charge on operating 

liabilities.  

The analysis reveals eight drivers of ROCE, as shown in Equation (2): 

ROCE = MSR × [Sales PM∗ × ATO∗ +
Other Items

OA
+ OLLEV × OLSPREAD

+ FLEV × (RNOA −  NBC)].
 (2) 

The choice of disaggregation level is made empirically as a tradeoff between the risk of 

information loss from less disaggregation and the risk of introducing noise from more 
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disaggregation.6 If idiosyncratic variation of ratio components cannot be used to increase forecast 

accuracy there is no gain from disaggregation. Indeed, Gerakos and Gramacy (2013) and Li and 

Mohanram (2014) document that a simple random walk outperforms linear models with a larger 

(more disaggregated) set of predictors in out-of-sample earnings forecasting.7 Our first hypothesis, 

stated in null form, is as follows: 

Hypothesis 1. Higher-level ratio disaggregation does not change model performance. 

2.1.2 Core versus Transitory Items 

While some of the eight ROCE drivers in NP’s framework, such as ATO, are persistent, 

others, such as RNOA deriving from unusual operating income, are mean reverting (transitory). 

Excluding transitory components could enhance forecasting performance by decreasing 

prediction-irrelevant noise or impair performance because of information loss; that is, the 

treatment of non-core/transitory items is a distinct financial statement analysis design choice 

involving a tradeoff between information loss and noise. Acknowledging this, NP adjust their 

decomposition of ROCE as shown in Equation (3): 

ROCE = MSR × [Core Sales PM∗ × ATO∗ +
Core Other Items

OA
+

UOI

OA
+ OLLEV

× OLSPREAD + FLEV × (Core RNOA − Core NBC +
UOI

NOA
−

UFE

NFO
)],

 (3) 

where Core Sales PM∗ denotes modified profit margin from core sales (= (Core OI from Sales + 

io)/Sales), UOI unusual operating income, Core RNOA core return on net operating assets (= Core 

OI from Sales/NOA + Core Other Items/NOA), Core NBC core net borrowing cost (= Core 

                                                 
6 If a ratio’s components are not perfectly correlated, each component might exhibit idiosyncratic value-relevant 

variation that is lost in aggregation. 
7 This idea is consistent with the principle of Ockham’s razor. William of Ockham, a 14th-century logician, argued 

that greater model complexity increases the possibility for error. In our context, this principle suggests that simpler 

(less disaggregated) models might outperform more complex (more disaggregated) ones. 
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NFE/NFO), and UFE unusual financial expense. Equation (3) identifies eight relatively more 

persistent drivers of ROCE: MSR, FLEV, Core NBC, ATO*, Core Sales PM*, Core Other 

Items/OA, OLLEV, and OLSPREAD. 

There are at least three considerations as to whether including versus excluding items 

labeled transitory/non-core (i.e., UOI/OA, UFE/NFO) improves forecasting. First, accounting 

requirements may produce transitory income items with predictive ability. Penman and Zhang 

(2002) argue that conservative accounting rules can generate future-period (accounting) benefits 

while decreasing current-period income; for example, recording a current-period impairment loss 

implies an increase in future accounting performance. The impairment loss, classified as 

transitory/non-core, would be relevant for predicting future earnings. Second, while models that 

include persistent operating items and exclude transitory non-operating items should 

(theoretically) produce better forecasts, both theory (Dye 2002) and empirical research (Barnea, 

Ronen, and Sadan 1976; Kinney and Trezevant 1997; Givoly, Hayn, and D'Souza 2000; McVay 

2006) suggest managers sometimes manipulate income statement presentation to blur the 

core/non-core distinction. Third, the distinction between transitory/non-core and persistent/core 

income items arises at least partly from the firm’s business model. The empirical measures used 

by NP and in this paper are based on Compustat data definitions applied to all entities, which may 

result in an imperfect separation of core from non-core items for at least some firms. Thus, whether 

a financial statement analysis design choice to focus on core items improves forecasts is an 

empirical question. Our second hypothesis, stated in null form, is as follows: 

Hypothesis 2. Excluding transitory items does not change model performance. 

2.1.3 Amount of Past Information/Number of Lags to Use in Predictions 

An analyst must decide how much past information to consider. Using more lags of 
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historical data increases both the amount of information supporting predictions and the likelihood 

that a firm’s activities have changed sufficiently to reduce the signal-to-noise ratio. Our third 

hypothesis, stated in null form, is as follows: 

Hypothesis 3. Using more predictor lags does not change model performance. 

2.1.4 Including versus Excluding Financing Activities 

NP propose a model simplification based on provisions in US GAAP and IFRS that require 

recognition or disclosure of market (fair) values of net financial obligations (NFO). If NFO fair 

value equals fundamental value, Equation (1) can be simplified as follows: 

V0
𝐸 = NOA0 − NFO0 + ∑(

∞

𝑡=1

RNOA − 𝜌𝑊 + 1) × NOA𝑡−1 × 𝜌𝑊
−𝑡, (4) 

where NOA denotes value of net operating assets, NFO value of net financial obligations, 𝜌𝑊 

weighted average cost of capital (WACC) (𝜌𝑊 = 𝜌𝑤 ×
V0

𝐸

(V0
𝐸+NFO0)

+ 𝜌𝐷 ×
(1−𝜏)×NFO0

(V0
𝐸+NFO0)

), 𝜌𝐷 cost of 

debt, and 𝜏 marginal tax rate. Equation (4) reduces the forecasting inputs to the five drivers of 

RNOA attributable to common shareholders: ATO*, Sales PM*, Other Items/OA, OLLEV, and 

OLSPREAD. An analyst chooses between the simplified model and the full model. 

As in the case of the core versus non-core distinction, it is unclear ex ante whether the 

simplified Equation (4) model improves model performance; that is, it is an empirical question 

whether past financing activities are informative about future operating activities. While some 

view the valuation implications of operating and financing activities as mutually independent 

(Penman 2012; Li, Richardson, and Tuna 2014), the agency cost literature suggests a possible 

association between operating and financing activities. For example, managers of firms close to 

bankruptcy might take excessive operating risks, because of the call option-like payoff structure 
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of equity (Jensen and Meckling 1976). Our fourth hypothesis, stated in null form, is as follows: 

Hypothesis 4. Focusing on operating activities does not change model performance. 

2.1.5 Forecast Horizon and Terminal Value 

Equations (1) and (4) specify indefinite-horizon forecasts. For practicality, analysts assume 

firms reach steady-state residual income growth to estimate terminal value and choose a forecast 

horizon T accordingly (Penman 2012; Nissim 2019). Applying a terminal growth rate 𝑔  and 

forecast horizon T to Equations (1) and (4) yields 

V0
𝐸 = CSE0 + ∑

(ROCE𝑡 − 𝜌𝑤 + 1) × CSE𝑡−1

𝜌𝑤
𝑡

𝑇

𝑡=1

+
(ROCE𝑇+1 − 𝜌𝑤 + 1) × CSE𝑇

𝜌𝑤
𝑇 × (𝜌𝑤 − 𝑔)

 (5) 

and 

V0
𝐸 = NOA0 − NFO0 + ∑

(RNOA𝑡 − 𝜌𝑊 + 1) × NOA𝑡−1

𝜌𝑊
𝑡

𝑇

𝑡=1

+
(RNOA𝑇+1 − 𝜌𝑊 + 1) × NOA𝑇

𝜌𝑊
𝑇 × (𝜌𝑊 − 𝑔)

.

 (6) 

The analyst must choose T on practical empirical grounds. Applying a terminal growth rate 

g is effectively a special case of making discrete forecasts for individual periods after T: it is 

equivalent to making a forecast for each period that is exactly g percent larger than in the previous 

period. While analysts can incorporate more information in making individual forecasts for each 

period, doing so will improve performance only if using the additional information improves upon 

a naïve terminal growth rate approach. The more distant the forecasted period in question, the 

lower the likelihood this criterion is met. While 1-, 5-, and 10-year horizons are common in 

practice, Koller, Goedhart, and Wessels (2020, p. 270) refer to 5- and 7-year horizons and Nissim 

(2019) finds that a 10-year horizon yields the terminal value estimate closest to observed price in 
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the terminal year. Our fifth hypothesis, stated in null form, is as follows: 

Hypothesis 5. Longer prediction horizons do not change model performance. 

We acknowledge the practical necessity of other financial statement analysis design 

choices, including the reinvestment rate, discount rates 𝜌𝑤 and 𝜌𝑊, and growth rate 𝑔. Because 

the number of models to be estimated grows multiplicatively with the number of choices, we focus 

on the five design choices described in NP that we believe to be most important and most directly 

connected to accounting information. We invoke Miller and Modigliani (1961) principles and set 

the reinvestment rate to one. In line with historical GDP figures, we assume a 2% growth rate (e.g., 

Penman and Sougiannis 1998). To ensure consistency with our asset pricing tests, we estimate 

discount rates using the Fama and French (2015) five-factor model. 

Equations (5) and (6) link value to ratios, and financial statement analysis links past 

realizations to future realizations of ratios. Because both links or relations are nonlinear, it is 

necessary to use methods that can accommodate complex nonlinear associations to apply financial 

statement analysis in forecasting and value estimation. The next section describes such a tool: 

neural networks, a machine learning algorithm. 

2.2 Neural Networks 

A neural network generalizes estimators such as OLS to model complex nonlinear relations 

among independent and (possibly multiple) dependent variables through a layered system of 

equations. The basic building block of a neural network is a neuron, a function that takes in 

variables as inputs, combines them through a linear equation, and transforms the output of that 

equation through a (typically) nonlinear function known as an activation function. OLS and 

logistic regression are examples of single neurons that create a linear relation among independent 
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variables and transform the relation by multiplying by one and (1 + 𝑒𝑥)−1, respectively. 

A neural network organizes relations among inputs into layers. Each layer, including the 

input layer (independent variables) and output layer (dependent variables), consists of a series of 

neurons. Layers between the input and output layers are hidden layers. A neural network with one 

(multiple) hidden layer(s) is referred to as shallow (deep). While the connections between layers 

can be set arbitrarily, the most common implementations are sequential models (feedforward 

neural networks) that fully connect each neuron in the preceding layer to each neuron in the next 

layer. In other words, the neurons of one layer become the independent variables that are the inputs 

for the neurons in the next layer. We use a fully connected sequential model with multiple variables 

in the input and output layers, constant activation functions, and a fixed number of neurons in each 

hidden layer. By combining the activation functions with a series of layers, the neural network can 

model complex nonlinear relations without the need to specify a functional form. 

Panels A to C of Figure 2 compare three special cases of neural networks: a single-layered 

network with one predictor and one outcome variable; a single-layered network with eight 

predictors and one outcome variable; and a multi-layered model with two hidden layers, 10 

neurons per layer, eight predictors, and five outcome variables. Circles symbolize neurons, and 

lines indicate connections among neurons. The Panel A model resembles the random walk model 

recommended by Watts and Leftwich (1977), who find that it outperforms more complicated 

earnings prediction schemes in time-series regressions. The Panel B model resembles the model 

of Hou, Van Dijk, and Zhang (2012), who argue that earnings prediction can be enhanced by 

adding predictors such as accruals and the book-to-market ratio in a pooled cross-sectional model. 

The Panel C model resembles a more general neural network with the potential to model the 

nonlinearities and interactive effects of NP’s framework by adding hidden layers.  
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As previously noted, neural networks can estimate arbitrarily complex functions among 

independent and dependent variables. While in principle the same outcome is achievable by 

including higher-order polynomials and interaction terms in linear regression models, the 

dimensionality of this problem quickly makes estimation infeasible. A simple linear regression 

with 10 independent variables would estimate 1 + 10 = 11 parameters. Including the squares and 

cubes of each independent variable increases the number of parameters to be estimated to 31 [= 1 

+ 10 + 10 + 10]. Including interactions among these 30 independent variables increases the number 

of parameters to 1 + 10 + 10 + 10 + 29! = 8.84 × e30. Once the number of parameters exceeds the 

number of observations in the dataset, either the model is not estimable via OLS, or the estimates 

will behave poorly (Huber 1973). In contrast, neural networks allow researchers to capture higher-

order and interactive relations without explicitly specifying them. The combination of hidden 

layers connected through nonlinear activation functions approximates such relations automatically 

(Hornik, Stinchcombe, and White 1989; Cybenko 1989; Tsang, Cheng, and Liu 2017), reducing 

computing and implementation time, limiting subjective research design choices, and making 

neural networks prime candidates for modeling the complex nonlinear relations between the past 

and future value-determining fundamentals discussed in the previous section. As Figure 3 shows, 

the popularity (measured by web queries analyzed via Google Trends) of neural networks has 

increased substantially relative to that of other prominent machine learning algorithms previously 

used in the accounting literature, such as lasso regressions and random forests. We implement the 

neural network using Google’s TensorFlow API. The online appendix details our machine learning 

design choices. 
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2.3 Model Performance Evaluation 

 We assess model performance two ways to provide two distinct kinds of evidence on NP’s 

structural model and on the five financial statement analysis design choices previously discussed. 

We first compare the forecast accuracy of neural network estimation of NP’s framework to that of 

a random walk and OLS estimation. 8  This assessment is independent of the firm’s trading 

environment and is used to test Hypotheses 1, 2, and 3. However, assessing whether RNOA or 

ROCE can be forecasted more accurately does not provide evidence of informativeness to an 

equity investor. Therefore, our second, complementary assessment is based on future portfolio 

returns, adopting the premise that NP’s framework is designed to aid in equity valuation and the 

assumption that an equity investor wishes to maximize risk-adjusted return.  

The portfolio-returns approach allows us to compare ROCE-based models that combine 

effects of operating and financing activities with RNOA-based models that abstract from financing 

activities (Hypothesis 4) and to analyze the effects of forecast horizon choices (Hypothesis 5). 

Given their differing distributional properties as shown in Tables 1 and 3, it is unclear how to 

analyze the relative performance of ROCE versus RNOA models in other ways, such as comparing 

absolute forecast error or bias (Hou et al. 2012; Evans, Njoroge, and Yong 2017). Also, if 

macroeconomic shocks affect earnings outcomes (Ball, Sadka, and Sadka 2009; Bonsall, Bozanic, 

and Fischer 2013), earnings expectations—not earnings realizations—determine stock prices. 

                                                 
8 We use scaling to enhance comparability of observations from differently sized firms and to make the observations 

invariant to inflation. We use CSE or NOA at the beginning of the period in which the forecast is made as scalars for 

our ROCE and RNOA predictions. This approach addresses a technical problem: analysts forecasting earnings divided 

by a scalar that will realize after the year in which the forecast is made are forecasting both the earnings number and 

the scalar. It is therefore unclear whether their forecast accuracy derives from accurate earnings forecasts, accurate 

scalar forecasts, or accurate forecasts of the covariance between earnings and the scalar. By using a scalar that is 

realized before the forecast is made, we can attribute forecast accuracy to the earnings forecast. Given that we aim to 

assess machine learning’s usefulness in earnings prediction, this approach is appropriate for our analyses. We thank 

Stephen Penman for pointing out this issue to us. 
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We measure portfolio performance as alpha from a Jensen, Black, and Scholes (1972) time-

series asset pricing model. We calculate each model’s alpha as follows: 

1. Calculate a firm’s value-to-price ratio. Value is computed using Equations (5) and (6). 

Valuation inputs are obtained using neural networks under the financial statement analysis 

design choices described in Section 2.1. To ensure that all information is available at the time 

of portfolio formation in year t, forecasting models are estimated using data up to year t − Lead, 

where Lead is the number of ROCE or RNOA leads that the model is designed to forecast.9 

Figure 4 shows the timeline. To ensure that differences in model performance are driven by 

fundamentals and not by differences in sample composition, we require that the estimation 

sample includes firm-year observations for which 10 leads and five lags for each predictor 

variable used in a level 4 disaggregation are available. 

 

2. Following Fama and French (1993), at the end of June in year t + 1, form decile portfolios 

using the value-to-price ratios based on accounting data for fiscal year t. The first portfolios 

are formed in 1988 (1963 plus a maximum lead of 10 years plus a maximum lag of five years 

plus a minimum sample estimation period of 10 years). 

 

3. Calculate future annual value-weighted portfolio returns from July in year t + 1 to June in year 

t + 2.10 The portfolio holding period is shown in Figure 4.11 

 

4. Calculate excess returns by subtracting returns on the risk-free security and the lowest decile 

portfolio from the return on the highest decile portfolio. 

 

5. Regress excess return on the risk factors in Fama and French (2015). Alpha is the regression 

intercept estimate. 

 

In the absence of an agreed-upon asset pricing model, we do not aim to provide evidence 

on a novel market anomaly (i.e., mispricing). We use the results of portfolio returns tests to provide 

evidence on the decision usefulness to equity investors of different financial statement analysis 

design choices, consistent with Jackwerth and Slavutskaya’s (2018) observation that asset pricing 

                                                 
9 If the parameters to be estimated vary predictably by industry, estimating the model by industry would improve 

forecasting. However, Damodaran (2007) argues that such variation is not predicted by valuation theory, and Fairfield, 

Ramnath, and Yohn (2009) do not find that estimating earnings forecasting models by industry yields more accurate 

predictions. 
10 As noted by Loughran and Ritter (2000), using value-weighted instead of equal-weighted returns helps ensure that 

results are not driven by small, illiquid stocks that are costly to trade. Tests based on value-weighted returns, therefore, 

offer less power to detect mispricing. 
11 Our results are robust to using monthly instead of annual returns. 



 

 19 

models can be used to assess relative performance of models incorporating different fundamentals. 

We are agnostic about individual models’ alpha magnitudes, and we focus on comparing relative 

alpha magnitudes across models to test the hypotheses developed in Section 2.1. That said, 

portfolio returns tests require the choice of a factor model. Results reported in the tables are based 

on the five factors in Fama and French (2015). Untabulated analyses based on an unadjusted excess 

return model, the CAPM, the Fama and French (1993) three-factor model, and the Carhart (1997) 

four-factor model support inferences generally similar to those discussed in Section 4.2.  

3. Data and Descriptive Evidence 

3.1 Data 

Following NP, we use annual Compustat data from 1963 to 2019 for NYSE and AMEX 

firms. We retain observations with five lags for all required variables and non-negative values for 

CSE, NOA, OA, and OL at fiscal-year beginning and end to ensure both that our results are not 

driven by different sample compositions across models and meaningful values for computed ratios. 

Stock return and asset pricing factor data are from CRSP and Ken French’s website. 

3.2 Summary Statistics 

Table 1 Panel A presents descriptive statistics for price and valuation anchors, i.e., 

shareholders’ equity (CSE), net operating assets (NOA), and net financial obligations (NFO). 

Following Fama and French (1993), we measure price as market value of equity on the last day of 

June in the year succeeding the fiscal year of portfolio formation. The mean and median values of 

price exceed the mean and median values of CSE and NOA, indicating that the market, on average, 

expects firms to earn positive future residual income. For most firms NFO is positive, which means 

their financial obligations exceed their financial assets. However, financial assets exceed financial 

obligations for firms in the first percentile of the NFO distribution. Table 1 Panel B reports 
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descriptive statistics for the profitability drivers in NP’s framework. The mean and median values 

are similar to those presented in NP’s Table 1; the standard deviations are higher, because NP 

winsorize all variables while we do not. In contrast to NP, we aim to predict profitability out-of-

sample, not to report descriptive evidence. Therefore, to mimic a realistic forecasting environment 

as closely as possible, our algorithms need to be capable of handling outliers. 

Table 2 presents correlations for selected ratios, with Pearson (Spearman) correlations 

above (below) the diagonal. Several correlations of profitability drivers with ROCE and RNOA 

are economically and statistically significant, suggesting the predictive usefulness of NP’s 

framework. ROCE and ROTCE are close to perfectly correlated, while RNOA exhibits 

idiosyncratic variation, with Pearson (Spearman) correlation with ROCE and ROTCE equal to 

0.02 (0.89). The divergence between Pearson correlations (which are heavily affected by outliers) 

and Spearman correlations (which are not) points to the practical need for algorithms that are 

capable of handling outliers. Sales PM is more strongly correlated with contemporaneous non-core 

profitability measures than Core Sales PM, while the opposite holds for Core RNOA. While 

Fairfield and Yohn (2001) find turnovers are better profitability predictors than margins, in Table 

2 margins are more strongly correlated with contemporaneous profitability than turnovers. OLLEV 

correlates more strongly with RNOA than with ROCE, a potential by-product of cross-sectional 

variation in financial leverage confounding the univariate relation between OLLEV and ROCE. 

3.3 Nonlinearities 

Figure 5 Panels A to H present visual evidence on the relation between future profitability 

and contemporaneous ratios, by plotting median portfolio ROCE in periods t to t+10 by ROCE, 

FLEV, SPREAD, ATO, Sales PM, OLLEV, OLSPREAD, and RNOA decile in period t. Except 

for OLLEV, the plots suggest nonlinear relations. Plotted relative to future ROCE, current ROCE, 
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OLSPREAD, and RNOA have an S-shaped association, FLEV and ATO have a U-shaped 

association, and SPREAD and Sales PM have a concave association. These functional forms are 

visible over 10 years and attenuate over time. Figure 6 Panels A to D present examples of 

interactive relations across ratios in predicting future ROCE. The surfaces obtained from plotting 

ATO and Sales PM, FLEV and OLSPREAD, FLEV and Sales PM, and ATO and OLSPREAD on 

the X and Y axes and lead 1 ROCE on the Z axis exhibit curvatures that are visually different from 

the straight plane observed under linear, non-interactive relations. In sum, the visual evidence in 

Figures 5 and 6 suggests nonlinearities in the dynamic relations across several fundamental ratios 

and subsequent profitability. 

It would be difficult or even infeasible to specify these (visually) nonlinear functional 

forms in a linear model based on accounting or financial statement analysis intuition, which makes 

flexible machine learning algorithms the appropriate estimation tool. While other algorithms such 

as Random Forests or Gradient Boosted Trees can handle nonlinearities, we use NN because it is 

readily able to approximate any functional form and, as evidenced by Figure 3, it is widely used 

(Hornik et al. 1989; Schmidhuber 2015; Huang, Jin, Gao, Thung, and Shen 2016). We 

acknowledge that other algorithms (or some combination thereof) might produce more accurate 

profitability forecasts. However, our goal is to estimate nonlinear relations within NP’s framework 

to derive implications for financial statement analysis, not to analyze multiple machine learning 

algorithms to determine which one yields the most accurate predictions.12 

4. Evaluating Hypotheses 1, 2, and 3 Using Forecast Errors 

We first analyze whether estimating NP’s framework via neural networks yields more 

                                                 
12 Examples of papers that take an algorithm-comparison approach include Hunt et al. (2019) and Anand et al. (2020). 
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accurate out-of-sample profitability forecasts than a random walk. Previous research (e.g., Gerakos 

and Gramacy (2013) and Li and Mohanram (2014), finds that a random walk tends to yield more 

accurate predictions than other more complex earnings forecasting models, justifying the random 

walk as a benchmark in our setting. Table 3 Panels A and B show 1- to 10-year-ahead median 

absolute out-of-sample forecast errors for ROCE and RNOA for each of the NP models estimated 

via neural networks and median absolute random walk out-of-sample forecast errors (line 1 of the 

table).13,14 Standard errors are computed following Mann and Whitney (1947). The table shows 

that most of the NP models generally outperform the random walk; accuracy differences are 

significant at the 1% level. The improvement in accuracy is substantial, as compared to the 

improvements obtained by analyzing components of NP’s framework reported by Fairfield et al. 

(1996), Fairfield and Yohn (2001), and Esplin et al. (2014). Several 1-year-ahead ROCE models 

outperform the random walk by more than half a percentage point of ROCE. For both ROCE and 

RNOA, the model improvements relative to the random walk increase in the forecast horizon. For 

example, at the 9-year horizon, several models outperform the random walk by more than a 

percentage point for ROCE and by more than half a percentage point for RNOA. 

                                                 
13 We analyze median instead of mean absolute forecast errors because they are less affected by outliers; our results 

for mean forecast errors are even stronger. Further, following Call, Hewitt, Shevlin, and Yohn (2016) and Jackson, 

Plumlee, and Rountree (2018), in Online Appendix Tables O1 and O2, we generally find that the proportion of cases 

for which neural network estimation of NP’s framework yields more accurate ROCE and RNOA forecast than linear 

and random walk estimation exceeds 50%. The improvements are more pronounced relative to OLS than to random 

walk estimation, which is not surprising since OLS’s mean squared error objective function gives relatively more 

weight to avoiding individual large forecast errors while the random walk’s prediction that things stay as they were 

tends to be approximately right in most cases but terribly wrong in some cases.  
14 As discussed in the online appendix, our setting requires that we estimate 640 forecasting models (32 sets of 

independent variables × 2 dependent variables × 10 leads) for 31 years, for a total of 19,840 neural networks. Results 

of those 640 models are reported in Table 3. Using the 640 forecasting models, we construct intrinsic value estimates 

from forecasts over 1-, 5-, and 10-year horizons. This analysis yields 192 valuation models (32 sets of independent 

variables × 2 dependent variables × 3 forecast horizons). 
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4.1 Financial Statement Analysis Design Choices 

Table 4 analyzes the relation between three financial statement analysis design choices and 

forecasting performance for ROCE (Panel A) and RNOA (Panel B) by regressing 1- to 10-year-

ahead median absolute forecast errors on indicators for these design choices. Level 2 (3, 4) is an 

indicator that the profitability forecasting model uses the level 2 (3, 4) disaggregation illustrated 

in Figure 1. Core is an indicator that the model excludes transitory items. Lag 1 (3, 5) is an indicator 

that the model uses ratios from the current and preceding 1 (3, 5) years. 

4.1.1 Hypothesis 1: Disaggregation Level 

 We find strong evidence that increasing the ratio disaggregation level improves model 

performance for RNOA forecasts. Relative to a level 1 disaggregation, a level 2 disaggregation, 

which incorporates financial leverage, reduces year-ahead median absolute forecast errors by 

1.4%. The magnitude of improvement declines over time; its statistical significance persists up to 

10 years ahead. Level 3 and level 4 disaggregations provide somewhat smaller improvements over 

level 1 disaggregation, and the statistical significance declines more quickly. In contrast, we find 

median absolute ROCE forecast accuracy appears to deteriorate with disaggregation. 

4.1.2 Hypothesis 2: Core versus Transitory Items 

We find evidence that focusing on core items (excluding transitory items) improves model 

performance for ROCE forecasts one and five years ahead but not for other horizons and not for 

RNOA forecasts. This finding suggests, consistent with the discussion in Section 2.1.2, that, as a 

practical matter, items labeled “non-core” can have predictive ability, perhaps because financial 

reporting rules and/or management’s reporting decisions blur the core/non-core distinction.  

4.1.3 Hypothesis 3: Historical Information 

 We find no evidence that using more historical information improves forecast accuracy. If 
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anything, the results indicate that using more historical information decreases ROCE and RNOA 

forecast accuracy, especially for forecasts using financial statement information from three to five 

years back.  

 Viewed as a whole, we believe the results of testing Hypotheses 1, 2, and 3 suggest 

meaningful forecasting benefits from increasingly granular disaggregation of recent reporting 

outcomes, but not much benefit (and perhaps forecast accuracy losses) from using more lags of 

highly aggregated past realizations. Results with respect to including only core items are more 

mixed: our results suggest a focus on core items does not improve RNOA forecasts and may, for 

some horizons, improve ROCE forecasts.  

4.2 Importance of Nonlinearities for Profitability Forecasting 

Figure 1 and Equations (2) and (3) reveal multiplicative relations between several ratios 

and profitability, with the number of nonlinear relations increasing in the level of disaggregation. 

Figures 5 and 6 provide visual evidence of nonlinear associations between ratios and profitability 

that attenuate over a 10-year horizon. This evidence suggests nonlinearities should affect the 

choices of forecast horizon and the number of historical periods to include in the short run, and 

possibly not in the long run. 

To provide evidence on the importance of considering nonlinearities, we re-estimate the 

640 models analyzed in Table 3 using OLS and present their median absolute ROCE and RNOA 

forecast errors in Table 5. All OLS models have reliably larger median absolute forecast errors, as 

compared to neural network models. The differences often exceed several percentage points for 

both ROCE and RNOA forecasts and appear most pronounced for long-horizon forecasts. Table 6 

analyzes these differences by pooling the forecast errors in Tables 3 and 5 and extending the Table 

4 analysis by interacting the indicators for financial statement analysis design choices with NN, an 
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indicator that the model is estimated via a neural network rather than OLS. 

In Table 6, NN’s main effect is significantly negative for most horizons for ROCE and 

RNOA forecast errors, indicating that considering nonlinearities improves forecast accuracy on 

average. We find evidence that considering nonlinearities incrementally improves forecast 

accuracy for models built on higher levels of disaggregation, especially for level 3 disaggregation 

for short-horizon ROCE and RNOA forecasts, and for long-horizon RNOA forecasts of models 

focusing on core items. Consistent with our previous findings concerning the benefits of using 

more historical information, Table 6 shows the benefit of using neural network estimation over 

OLS models is partially offset for models using more past financial statement data. 

4.3 Cross-Sectional Analysis 

 To shed light on the types of firms for which financial statement analysis design choices 

and nonlinear estimation are especially important, we perform two cross-sectional analyses using 

firm characteristics that make forecasting more difficult measured three ways: extreme 

profitability outcomes, operating in a competitive industry, and lifecycle stage.15 First, in Table 7 

Panel A (Panel B), we report results of a median regression of 1-year-ahead absolute ROCE 

(RNOA) forecast errors of all neural network models (summarized in Table 3) on indicators for 

financial statement analysis design choices interacted with firm-characteristics indicators.16 To 

ensure our inferences derive from variation in the interactive effect between financial statement 

analysis design choices and firm characteristics rather than variation in firm characteristics per se, 

                                                 
15 With respect to lifecycle stage, evidence in Vorst and Yohn (2018) and Lyle, Vorst and Yohn (2021) suggests a life-

cycle component of earnings.  
16 Median regressions are also known as a least absolute deviation (LAD) regression or a quantile regression at the 

50th percentile. 
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we include firm-year fixed effects. We suppress the slope coefficients of different financial 

statement analysis design choices, because these coefficients mirror the findings in Table 4. 

Second, in Table 8 Panel A (Panel B), we pool the 1-year-ahead absolute ROCE (RNOA) 

forecast errors of all neural network models with those of all OLS models (summarized in Table 

5) for each firm-year and regress the errors on an indicator that the model is estimated via the 

neural network (NN) interacted with the firm-characteristics indicators described before. To ensure 

that our inferences derive from variation in the interactive effect between the estimation method 

and firm characteristics rather than variation in firm characteristics or financial statement analysis 

design choices per se, we include firm-year-model fixed effects.17 Consistent with Table 6, we find 

that the coefficient on NN is significantly negative across all columns, highlighting that the 

improvements of nonlinear over linear estimations are pervasive and not concentrated in small 

pockets of firms. 

4.3.1 Extreme Profitability Outcomes 

 As illustrated in Figure 5, mean reversion in extreme ROCE deciles is greater than in 

middle deciles. Results in Table 7 Panels A and B column (1) interact the financial statement 

analysis design choice indicators with Outlier, an indicator that the firm-year observation’s ROCE 

is in an extreme ROCE decile. As evidenced by negative coefficients on interactions of Outlier 

with Core and indicators for higher disaggregation levels, focusing on core items and more 

granular ratio disaggregation help predict extreme profitability outcomes. In contrast, consistent 

with the notion that extreme profitability outcomes are unusual and therefore less predictable using 

more historical information, the coefficients on Outlier’s interaction with Lags 1 to 5 are 

                                                 
17 By model we mean an indicator variable for the set of financial statement analysis design choices underlying the 

neural network, i.e., a unique identifier for each permutation of level of disaggregation, focus on core items, and the 

number of historical lags. 
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increasingly positive. The negative coefficients on interactions of Outlier with NN in Table 8 

Panels A and B column (1) suggest a more pronounced forecasting advantage from nonlinear 

estimation (as compared to linear estimation) when accounting performance is extreme. 

4.3.2 Competition 

Competition can erode profit margins and thereby drive mean reversion in profitability 

(Bertrand 1883). Table 7 Panels A and B column (2) shows results from interacting the financial 

statement analysis design choice indicators with Competition, an indicator that the firm operates 

in a competitive industry. We find some evidence that higher levels of ratio disaggregation (using 

the past five years of financial statement data) are especially important for predicting ROCE 

(RNOA) of firms in competitive industries. Table 8 Panel A column (2) suggests less forecasting 

advantage from nonlinear estimation (as compared to linear estimation) for firms in competitive 

industries, possibly because profitability prediction is easier when the profitability of all firms 

within an industry exhibits mean reversion. 

4.3.3 Corporate Lifecycle 

We examine the relative importance of considering nonlinearities at five stages of a firm’s 

lifecycle, measured following Dickinson (2011): Introduction, Growth, Maturity, Shakeout, and 

Decline. Table 7 Panels A and B columns (4) to (8) show results when we interact the financial 

statement analysis design choice indicators with lifecycle-stage indicators. We generally find that 

higher model complexity does not improve performance, and for some financial statement design 

choices even degrades performance during the introduction, growth, and maturity stages, while 

greater disaggregation and a focus on core items provides advantages in the shakeout and decline 

stages. We find mixed evidence with respect to using more historical information. Using one to 

three years of additional financial statement data helps during the decline stage, while using five 
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years of additional financial statement data always hurts prediction. Lastly, Table 8 Panels A and 

B columns (4) to (8) show that nonlinear estimation’s advantage over linear estimation is more 

pronounced during the introduction, shakeout, and decline stages, and less pronounced during the 

growth and maturity stages, consistent with the intuition that profitability prediction is more 

difficult during the earlier and later stages of the corporate lifecycle than during the mid-stages. 

5. Evaluating Hypotheses 3 and 4 Using Alphas 

Table 9 reports Fama and French (2015) alphas computed as described in Section 2.3. Panel 

A (Panel B) presents results for ROCE-based (RNOA-based) models built on Equations (5) and 

(6) and compares their performance to that of a random walk–based model. Following Newey and 

West (1987), we compute heteroscedasticity- and autocorrelation-robust standard errors with a lag 

order of 4 × (29/100)2/9 ≈ 3. ROCE-based models generally perform poorly, with alphas often 

lower than those of the ROCE-based random walk model and sometimes significantly negative. 

For RNOA-based models, neural network models generally outperform the random walk model. 

5.1 Financial Statement Analysis Design Choices 

5.1.1 Hypothesis 4: Operating Activities  

As previously noted, the results in Table 4 cannot test Hypotheses 4 and 5 because of the 

nature of the dependent variable (median absolute forecast error). To test Hypothesis 4 we compare 

alphas in Table 9 Panels A and B by counting the number of times a RNOA-based model 

outperforms a ROCE-based model using the same financial statement design choices. RNOA-

based models outperform their ROCE-based counterparts for 87 of 96 models, providing strong 

evidence that a focus on operating activities improves model performance. This evidence is 

consistent with the notion put forward by Penman (2012) and others that value primarily derives 

from firms’ operating activities rather than from the way firms arrange to finance the resources 
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needed to perform these activities, and is not consistent with an agency-cost framework that links 

the valuation implications of operating activities with financing decisions. 

5.1.2 Hypothesis 5: Forecast Horizon 

We test Hypothesis 5 by counting the number of times a ROCE-based (RNOA-based) 

model with forecast horizons of 1, 5, and 10 years ahead outperforms models using the same 

financial statement design choices applied to alternative forecast horizons. For ROCE-based 

(RNOA-based) models the 5-year horizon outperforms for 18 (23) of the 32 models, indicating a 

5-year horizon generally does best. This evidence suggests a tradeoff: while short-horizon 

forecasts tend to be more accurate, switching from individual forecasts to a terminal growth rate 

too early increases the risk of failing to incorporate value-relevant information. While a long 

forecast horizon mitigates that risk, those forecasts tend to be increasingly imprecise and 

eventually constitute more noise than signal. 

5.2 Trading Cost 

We designed hypothetical trading strategies to reduce or eliminate certain obstacles to 

implementation: including NYSE/AMEX stocks and excluding NASDAQ stocks, conditioning on 

firms with at least five lags of fundamental data, using value-weighted returns, and taking positions 

in June of the following year to ensure all accounting information is available. Nevertheless, the 

alphas presented might be unrealistic if returns are mostly from short positions. Short-selling is 

expensive, and shares to short might be unavailable in the slow-moving over-the-counter short 

market (Lee and So 2015). 

We evaluate the importance of short positions using the model with the highest alpha, i.e., 

a 5-year horizon RNOA-based level 3 disaggregation model that does not focus on core items and 

incorporates five years of past data. Figure 7 Panel A, which plots the neural network model’s 
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cumulative risk-adjusted long and short portfolio returns over 1988–2019, provides visual 

evidence that the returns are driven by the long side. Indeed, while the cumulative return difference 

between the two portfolios increases over time, there is no evidence of extreme negative returns 

for the short portfolio, and the cumulative return on the long portfolio exceeds that on the short 

portfolio in every year. Figure 7 Panel B repeats the analysis when we estimate the model using 

OLS. The returns spread between the short portfolio and the long portfolio is positive and smaller, 

resulting in a cumulative return less than half that of the neural network model. This result provides 

additional evidence that an estimation approach that accommodates the nonlinearities inherent in 

NP’s framework is a main driver of model performance. 

6. Conclusion 

We estimate the structural profitability framework that Nissim and Penman (2001) 

proposed but did not estimate because estimation methods available at the time were insufficient 

for the framework’s nonlinear structure. We resolve the nonlinear estimation issue by using neural 

networks, a widely used machine learning algorithm that can capture arbitrarily complex relations 

across variables, to forecast firm-specific profitability using NP’s framework. We use the forecasts 

to estimate intrinsic values and apply those intrinsic value estimates in value-to-price-based 

hypothetical trading strategies. To provide insights for the teaching and practice of fundamental 

analysis, we explore the effects of variation in five financial statement analysis design choices that 

analysts must make on empirical rather than theoretical grounds. We aim to analyze NP’s structural 

framework, not to search empirically for the best profitability predictors, as might be done, for 

example, by applying machine learning to a large set of predictors atheoretically, without a 

framework that specifies the information to be considered. Such an approach focuses on prediction, 

not explanation, as discussed by Bertomeu (2020), for example. 



 

 31 

We find that profitability forecasts derived by estimating NP’s framework via neural 

networks are in general substantially more accurate than those derived from either a random walk 

or linear estimation and that hypothetical trading on intrinsic value estimates based on forecasts 

from estimating NPs structural model yields substantial risk-adjusted returns. With respect to the 

effects of design choices, we find that a focus on operating activities and core items and a forecast 

horizon of five years generally improves model performance. We find mixed evidence that using 

higher levels of disaggregation improves forecast accuracy and evidence that using more historical 

information appears not to improve forecast accuracy and may even harm it. Cross-sectional 

analyses suggest the benefits of nonlinear estimation are pervasive, not concentrated in small 

pockets of firms for which forecasting is particularly difficult. That said, higher model complexity 

and nonlinear estimation provide forecasting advantages for firms with extreme profitability levels 

and during the earlier and later stages of firms’ lifecycles, but not the mid-stages. The models’ 

hedge portfolio returns appear to be driven by long positions in firms trading on major exchanges, 

providing support for the practicability of the trading strategy. 
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Variable Definitions Appendix (∆ denotes change over the fiscal year) 

 
Variable Definition 

ATO Asset turnover: Sales/NOA 

ATO* Modified asset turnover: Sales/OA 

CNI Comprehensive net income: Compustat: NI – DVP + ∆MSA + ∆RECTA 

Core NBC Core net borrowing cost: Core NFE/NFO 

Core NFE Core net financial expense: Compustat: (XINT − IDIT) × (1 − MTR) + DVP 

Core OI from Sales Core operating income from sales: OI from Sales − UOI 

Core Other Items Core other items: Other Items − UOI 

Core RNOA Core return on net operating assets: Core OI from Sales/NOA 

Core Sales PM Core sales profit margin: Core OI from Sales/Sales 

Core Sales PM* Modified core sales profit margin: (Core OI from Sales + io)/Sales 

Core SPREAD Core financial leverage spread: Core RNOA − Core NBC 

CSE Common equity: Compustat: CEQ + TSTKP − DVPA 

FLEV Financial leverage: NFO/CSE 

io Implicit interest charge on operating liabilities: Rf × (OL − TXDITC) 

MIB Minority (noncontrolling) interest book value: Compustat: MIB 

MII Minority (noncontrolling) interest income: Compustat: MII 

MSA Marketable security adjustment: Compustat: MSA 

MSR Minority sharing ratio: (CNI/(CNI + MII)) × (CSE/(CSE + MIB))-1 (if CNI, MII, CSE, MIB ≥ 0, else 1) 

MTR Marginal tax rate: Top statutory federal tax rate plus 2% percent average state tax rate. The top federal statutory 

corporate tax (in percent): 52 (1963), 50 (1964), 48 (1965-1967), 52.8 (1968-1969), 49.2 (1970), 48 (1971-

1978), 46 (1979-1986), 40 (1987), 34 (1988-1992), 35 (1993-2017), and 21 (2018). 

NBC Net borrowing cost: NFE/NFO 

NFE Core net financial expense: Core NFE − ∆MSA 

NFO Net financial obligations: Compustat: (DLC + DLTT + PSTK − TSTKP + DVPA) − (CHE + IVAO) 

NOA Net operating assets: NFO + CSE + MIB 

OA Operating assets: Compustat: AT − CHE − IVAO 

OI Operating income: NFE + CNI + MII 

OI from Sales OI − Other Items 

OL Operating liabilities: OA − NOA 

OLLEV Operating liability leverage: OL/NOA 

OLSPREAD Operating leverage spread: (OI + io)/OA − io/OL 

Other Items Compustat: ESUB 

P Price at the end of the June in year following the fiscal year: Compustat: PRCCF × CSHO 

Rf Risk-free rate: One-year Treasury bill yield during the year 

RNOA Return on net operating assets: OI/NOA 

ROCE Return on common equity: CNI/CSE 

ROTCE Return on total common equity: (CNI + MII)/(CSE + MIB) 

Sales Compustat: SALE 

Sales PM Sales profit margin: OI from Sales/Sales 

Sales PM* Modified sales profit margin: (OI from Sales + io)/Sales 

SPREAD Financial leverage spread: RNOA − NBC 

TXDITC Deferred taxes and investment tax credit: Compustat: TXDITC 

UFE Unusual financial expense: Compustat: ∆MSA 

UOI Unusual operating income: Compustat: (NOPI + SPI) × (1 − MTR) − ESUB + XIDO + ∆RECTA 
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Figure 1. Nissim and Penman (2001) Analysis of ROCE 
This figure depicts the analysis of profitability developed in Nissim and Penman (2001). All variables are defined in the appendix.  
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Figure 2. Estimator Comparison 
Panels A, B, and C graphically present the architecture of a single-layered neural network with a single predictor, a 

single-layered neural network with 8 predictors, and a fully connected sequential multi-layered neural network with 1 

input layer with 8 neurons, 2 hidden layers with 10 neurons each, and one output layer with 5 neurons.  

 

Panel A. Single-layered Neural Network with a Single Predictor 
 

 
 

Panel B. Single-layered Neural Network with Multiple Predictors 
 

 
 

Panel C. Multi-layered Neural Network 
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Figure 3. Prominence of Three Machine Learning Algorithms, 2004-2020 
This figure depicts the prominence of different machine learning algorithms as measured by web queries analyzed via 

the web tool Google Trends over the 2004 to 2020 period. 

 

 
 

 

Figure 4. Model Estimation and Forecasting Timeline 
This figure depicts the timeline for model estimation, forecasting, and portfolio formation and resolution. The sample 

period covers 1963 to 2019. The sample includes NYSE and AMEX firms with available data, as described in Section 

3.1.  
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Figure 5. Univariate Time-Series Plots 
Panels A to H present median portfolio ROCE in periods t to t+10 by ROCE, FLEV, SPREAD, ATO, Sales PM, OLLEV, OLSPREAD, and RNOA decile in period 

t. All variables are defined in the appendix. 

 

Panel A. Future ROCE by Current ROCE Decile Panel B. Future ROCE by Current FLEV Decile 

  
Panel C. Future ROCE by Current SPREAD Decile Panel D. Future ROCE by Current ATO Decile 
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Panel E. Future ROCE by Current Sales PM Decile 

 

 

Panel F. Future ROCE by Current OLLEV Decile 

  
Panel G. Future ROCE by Current OLSPREAD Decile Panel H. Future ROCE by Current RNOA Decile 
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Figure 6. Illustrating Interactive Relationships across Variables in ROCE Prediction 
Panels A to D illustrate examples of nonlinear, interactive relationships across various ratios and future ROCE. All variables are defined in the appendix. 

 

Panel A. ATO, Sales PM, and Lead 1 ROCE 

 

Panel B. FLEV, OLSPREAD, and Lead 1 ROCE 

 

  

Panel C. FLEV, Sales PM, and Lead 1 ROCE Panel D. ATO, OLSPREAD, and Lead 1 ROCE 
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Figure 7. Cumulative Portfolio Long and Short Position Abnormal Returns 
Panel A (Panel B) plots value-weighted cumulative abnormal long and short returns derived from portfolios formed 

based on forecasts of 5 RNOA leads obtained from Neural Network (OLS) models that rely on level 1 ratio 

disaggregation, do not focus on core items, and use the information in the financial statements of the previous five 

years. 

 

Panel A. Neural Network Estimation 

 

 
Panel B. OLS Estimation 
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Table 1. Descriptive Statistics  
Panels A and B present descriptive statistics for valuation anchors and profitability drivers. All variables are defined 

in the appendix. 

 

Panel A. Anchors 

Variable N Mean StD P1 P25 Median P75 P99 

P 57,454 4,446 18,506 3 68 423 2,110 75,716 

CSE 57,454 1,743 7,881 1 57 270 1,047 24,242 

NOA 57,454 3,230 18,290 3 80 400 1,664 43,428 

NFO 57,454 1,460 15,174 -1,459 3 71 542 18,875 

 

Panel B. Profitability Drivers from NP’s Framework  

Variable N Mean StD P1 P25 Median P75 P99 

ROCE 57,454 0.09 1.39 -0.86 0.05 0.12 0.18 0.74 

MSR 57,454 1.00 0.11 0.81 1.00 1.00 1.00 1.10 

ROTCE 57,454 0.10 1.37 -0.85 0.05 0.12 0.18 0.72 

RNOA 57,454 0.05 16.16 -0.47 0.05 0.10 0.16 0.75 

FLEV 57,454 0.97 8.16 -0.73 0.06 0.44 0.98 8.47 

SPREAD 57,454 0.01 16.32 -1.02 -0.01 0.04 0.11 1.27 

Sales PM 57,454 -0.03 5.46 -0.48 0.02 0.05 0.10 0.36 

ATO 57,454 2.76 15.31 0.20 1.11 1.92 2.93 13.80 

Other Items/NOA 57,454 0.00 0.19 -0.02 0.00 0.00 0.00 0.06 

NBC 57,454 0.04 2.33 -0.66 0.03 0.05 0.07 0.79 

Sales PM* 57,454 -0.01 5.26 -0.46 0.03 0.06 0.11 0.46 

ATO* 57,454 1.53 2.10 0.10 0.79 1.34 1.93 5.88 

OLLEV 57,454 1.03 60.05 0.07 0.27 0.40 0.60 4.82 

OLSPREAD 57,454 0.02 0.71 -0.45 -0.01 0.02 0.06 0.28 

Other Items/OA 57,454 0.00 0.05 -0.01 0.00 0.00 0.00 0.04 

Core Sales PM 57,454 -0.02 4.95 -0.35 0.03 0.05 0.09 0.31 

Core Other Items/NOA 57,454 0.00 0.58 -0.22 -0.01 0.00 0.01 0.28 

Core RNOA 57,454 0.04 16.21 -0.36 0.05 0.09 0.15 0.67 

Core NBC 57,454 0.05 1.93 -0.60 0.03 0.05 0.07 0.76 

Core SPREAD 57,454 -0.01 16.33 -0.95 -0.01 0.03 0.10 1.13 

Core Sales PM* 57,454 -0.01 4.95 -0.33 0.03 0.06 0.11 0.43 

Core Other Items/OA 57,454 0.00 0.15 -0.12 -0.01 0.00 0.01 0.16 

UOI/NOA 57,454 0.00 0.52 -0.26 -0.01 0.00 0.01 0.22 

UFE/NFO 57,454 -0.01 1.31 -0.05 0.00 0.00 0.00 0.04 
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Table 2. Correlation Matrix 
The table presents correlations among selected variables. Pearson (Spearman) correlations are above (below) the diagonal. * indicates statistical significance at the 

5% level. All variables are defined in the appendix. 

 

# Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 ROCE 1.00 0.99* 0.02* 0.24* 0.02* 0.02* 0.00 0.00 0.00 0.08* 0.02* 0.02* 0.00 0.01* 0.10* 0.00 

2 ROTCE 1.00* 1.00 0.02* 0.26* 0.02* 0.02* 0.00 0.00 0.00 0.08* 0.02* 0.02* 0.00 0.02* 0.10* 0.00 

3 RNOA 0.89* 0.89* 1.00 0.00 0.99* 0.01* -0.05* 0.00 0.07* 0.04* 0.01* 1.00* 0.00 0.99* -0.10* 0.00 

4 FLEV -0.06* -0.07* -0.34* 1.00 0.00 0.00 -0.01* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 SPREAD 0.74* 0.74* 0.79* -0.32* 1.00 0.01* -0.05* -0.14* 0.07* 0.04* 0.01* 0.99* -0.12* 1.00* -0.10* -0.08* 

6 Sales PM 0.66* 0.66* 0.60* 0.06* 0.53* 1.00 0.00 0.00 0.00 0.05* 0.84* 0.01* 0.00 0.01* 0.01 0.00 

7 ATO 0.23* 0.23* 0.37* -0.43* 0.26* -0.36* 1.00 0.00 0.66* -0.01 0.00 -0.04* 0.00 -0.04* -0.20* 0.00 

8 NBC -0.06* -0.06* -0.07* 0.26* -0.52* -0.10* 0.02* 1.00 0.00 0.00 0.00 0.00 0.83* -0.10* 0.00 0.56* 

9 OLLEV 0.16* 0.16* 0.26* -0.25* 0.18* -0.11* 0.48* -0.03* 1.00 0.00 0.00 0.08* 0.00 0.08* -0.28* 0.00 

10 OLSPREAD 0.74* 0.74* 0.78* -0.23* 0.70* 0.66* 0.11* -0.19* 0.20* 1.00 0.04* 0.03* 0.00 0.03* 0.08* 0.00 

11 Core Sales PM 0.56* 0.56* 0.50* 0.08* 0.45* 0.89* -0.40* -0.11* -0.09* 0.59* 1.00 0.01* 0.00 0.01* -0.01 0.00 

12 Core RNOA 0.79* 0.80* 0.89* -0.34* 0.71* 0.52* 0.39* -0.07* 0.28* 0.71* 0.58* 1.00 0.00 0.99* -0.13* 0.00 

13 Core NBC -0.05* -0.05* -0.07* 0.27* -0.51* -0.10* 0.02* 0.97* -0.04* -0.19* -0.11* -0.08* 1.00 -0.12* 0.00 0.00 

14 Core SPREAD 0.64* 0.64* 0.69* -0.32* 0.91* 0.45* 0.26* -0.54* 0.20* 0.63* 0.50* 0.77* -0.55* 1.00 -0.13* 0.00 

15 UOI/NOA 0.34* 0.34* 0.37* -0.10* 0.30* 0.31* 0.08* -0.01* -0.02* 0.26* 0.02* 0.08* -0.01* 0.06* 1.00 0.00 

16 UFE/NFO -0.02* -0.02* -0.01 0.00 -0.06* -0.01* 0.01 0.09* 0.00 -0.01* -0.01 0.00 -0.01 0.00 -0.01 1.00 
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Table 3. Median Absolute Forecast Errors from Neural Network Estimation of NP’s Framework Compared to a Random Walk  
Panel A (Panel B) presents out-of-sample 1-year-ahead to 10-year-ahead median absolute ROCE (RNOA) forecast errors derived from neural network models 

based on various combinations of financial statement analysis design choices within Nissim and Penman’s (2001) profitability framework. Standard errors are 

computed following Mann and Whitney (1947). *, **, and *** indicate that the median absolute forecast error is significantly smaller at the 10%, 5%, and 1% 

levels, respectively, when the forecast is based on neural network models as compared to a random walk forecast. 
 

Panel A. ROCE 
  Median Absolute ROCE Forecast Error Lead 

  1 2 3 4 5 6 7 8 9 10 
                      

Random Walk 0.0638 0.0874 0.1017 0.1150 0.1277 0.1374 0.1500 0.1658 0.1793 0.1931 
                      

Disaggregation level 1                     

Lag 0, Core 0 0.0626 0.1350 0.0909***  0.1048***  0.1172***  0.1290***  0.1394***  0.1534***  0.1656***  0.1813***  
Lag 1, Core 0 0.0596***  0.0774***  0.0916***  0.1052***  0.1164***  0.1296***  0.1403***  0.1534***  0.1676***  0.1817***  

Lag 3, Core 0 0.0856 0.0784***  0.0914***  0.1054***  0.1186***  0.1302***  0.1439***  0.1538***  0.1699***  0.1896 

Lag 5, Core 0 0.0618***  0.0794***  0.0940***  0.1059***  0.1178***  0.1295***  0.1443*  0.1602**  0.1767 0.1918 
Lag 0, Core 1 0.0590***  0.0815***  0.0959***  0.1044***  0.1184***  0.1289***  0.1393***  0.1548***  0.1654***  0.1810***  

Lag 1, Core 1 0.0591***  0.1046 0.0912***  0.1049***  0.1153***  0.1282***  0.1389***  0.1549***  0.1657***  0.1850**  

Lag 3, Core 1 0.0646 0.0788***  0.0934***  0.1048***  0.1157***  0.1280***  0.1408***  0.1579***  0.1725*  0.1908 
Lag 5, Core 1 0.0608***  0.0781***  0.0926***  0.1065***  0.1177***  0.1294***  0.1460 0.1553***  0.1775 0.1883 

Disaggregation level 2                     

Lag 0, Core 0 0.0593***  0.0786***  0.0914***  0.1041***  0.1172***  0.1294***  0.1404***  0.1534***  0.1685***  0.1796***  
Lag 1, Core 0 0.0604***  0.0781***  0.0934***  0.1071***  0.1166***  0.1300***  0.1395***  0.1540***  0.1659***  0.1826***  

Lag 3, Core 0 0.0611***  0.0807***  0.0947***  0.1059***  0.1181***  0.1301***  0.1413***  0.1629 0.1748 0.1906 

Lag 5, Core 0 0.0602***  0.0812***  0.0937***  0.1105***  0.1197***  0.1343*  0.1484 0.1537***  0.1774 0.1910 

Lag 0, Core 1 0.0565***  0.0899 0.0906***  0.1023***  0.1153***  0.1282***  0.1401***  0.1535***  0.1651***  0.1825***  

Lag 1, Core 1 0.0580***  0.0756***  0.0912***  0.1039***  0.1158***  0.1304***  0.1401***  0.1534***  0.1667***  0.1837***  

Lag 3, Core 1 0.0593***  0.0779***  0.0956***  0.1071***  0.1208***  0.1318***  0.1429***  0.1574***  0.1821 0.1922 
Lag 5, Core 1 0.0689 0.0796***  0.0940***  0.1109***  0.1185***  0.1348 0.1498 0.1635 0.1863 0.2001 

Disaggregation level 3                     

Lag 0, Core 0 0.0594***  0.0792***  0.0914***  0.1046***  0.1175***  0.1288***  0.1426***  0.1554***  0.1736*  0.1849***  
Lag 1, Core 0 0.0602***  0.0773***  0.0924***  0.1053***  0.1175***  0.1287***  0.1425***  0.1573***  0.1739 0.1868**  

Lag 3, Core 0 0.0624***  0.0828***  0.0941***  0.1089***  0.1219***  0.1275***  0.1480 0.1649 0.1791 0.1830**  

Lag 5, Core 0 0.0634**  0.0832***  0.0939***  0.1087***  0.1210***  0.1395 0.1535 0.1573**  0.1820 0.1913 
Lag 0, Core 1 0.0565***  0.0750***  0.0903***  0.1035***  0.1164***  0.1298***  0.1395***  0.1535***  0.1698***  0.1860**  

Lag 1, Core 1 0.0595***  0.0762***  0.0917***  0.1042***  0.1166***  0.1294***  0.1437***  0.1566***  0.1688***  0.1864*  

Lag 3, Core 1 0.0580***  0.0795***  0.0933***  0.1097***  0.1193***  0.1301***  0.1411***  0.1645 0.1791 0.2065 
Lag 5, Core 1 0.0603***  0.0793***  0.1027 0.1114**  0.1236***  0.1353*  0.1586 0.1623 0.1874 0.1941 

Disaggregation level 4                     

Lag 0, Core 0 0.0597***  0.0793***  0.0941***  0.1052***  0.1160***  0.1270***  0.1405***  0.1545***  0.1706***  0.1827***  
Lag 1, Core 0 0.0699 0.0792***  0.0948***  0.1049***  0.1158***  0.1301***  0.1407***  0.1587***  0.1762 0.1908 

Lag 3, Core 0 0.0615***  0.0814***  0.0957***  0.1085***  0.1212***  0.1362 0.1508 0.1695 0.1845 0.2107 

Lag 5, Core 0 0.0681 0.0840***  0.1013 0.1139 0.1223***  0.1339**  0.1578 0.1766 0.1966 0.2243 
Lag 0, Core 1 0.0567***  0.0762***  0.0920***  0.1043***  0.1145***  0.1297***  0.1436***  0.1519***  0.1692***  0.1847**  

Lag 1, Core 1 0.0575***  0.0785***  0.0921***  0.1045***  0.1175***  0.1300***  0.1419***  0.1629 0.1699***  0.1948 

Lag 3, Core 1 0.0585***  0.0797***  0.0963***  0.1037***  0.1167***  0.1343 0.1486 0.1702 0.1882 0.2018 
Lag 5, Core 1 0.0615***  0.0815***  0.0989 0.1124 0.1163***  0.1390 0.1475 0.1791 0.1861 0.2006 
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Panel B. RNOA 
  Median Absolute RNOA Forecast Error Lead 

  1 2 3 4 5 6 7 8 9 10 
                      

Random Walk 0.0462 0.0632 0.0743 0.0841 0.0937 0.1005 0.1097 0.1217 0.1306 0.1399 
                      

Disaggregation level 1                     

Lag 0, Core 0 0.0570 0.0670 0.0762 0.0838 0.0924 0.1019 0.1079 0.1171 0.1261 0.1375 

Lag 1, Core 0 0.0557 0.0663 0.0748 0.0827 0.0917 0.1015 0.1097 0.1183 0.1280 0.1385 

Lag 3, Core 0 0.0571 0.0679 0.0754 0.0846 0.0931 0.1008 0.1097 0.1188 0.1306 0.1465 

Lag 5, Core 0 0.0566 0.0692 0.0758 0.0866 0.0951 0.1033 0.1132 0.1242 0.1339 0.1459 

Lag 0, Core 1 0.0567 0.0675 0.0758 0.0838 0.0924 0.1023 0.1105 0.1181 0.1276 0.1377 

Lag 1, Core 1 0.0611 0.0686 0.0755 0.0834 0.0922 0.0997 0.1086 0.1176 0.1264 0.1378 

Lag 3, Core 1 0.0568 0.0674 0.0764 0.0841*  0.0936 0.1025 0.1091 0.1191 0.1298 0.1424 

Lag 5, Core 1 0.0575 0.0693 0.0771 0.0858 0.0954 0.1030 0.1127 0.1429 0.1317 0.1461 

Disaggregation level 2                     

Lag 0, Core 0 0.0427***  0.0565***  0.0680***  0.0776***  0.0876***  0.0959***  0.1055***  0.1158*  0.1230***  0.1348 

Lag 1, Core 0 0.0430***  0.0572***  0.0685***  0.0769***  0.0880***  0.0964**  0.1072 0.1157**  0.1241**  0.1377 

Lag 3, Core 0 0.0439***  0.0590***  0.0685***  0.0792***  0.0880***  0.0993 0.1103 0.1165 0.1274 0.1408 

Lag 5, Core 0 0.0459 0.0595***  0.0710**  0.0835 0.0908 0.1004 0.1127 0.1236 0.1318 0.1484 

Lag 0, Core 1 0.0414***  0.0554***  0.0659***  0.0760***  0.0850***  0.0954***  0.1042***  0.1166 0.1242*  0.1353 

Lag 1, Core 1 0.0415***  0.0559***  0.0664***  0.0787***  0.0887***  0.0973 0.1061 0.1144**  0.1274 0.1365 

Lag 3, Core 1 0.0430***  0.0567***  0.0692***  0.0791***  0.0896*  0.0975 0.1092 0.1220 0.1311 0.1485 

Lag 5, Core 1 0.0446***  0.0592***  0.0722 0.0828 0.0905 0.1000 0.1096 0.1202 0.1403 0.1424 

Disaggregation level 3                     

Lag 0, Core 0 0.0425***  0.0561***  0.0669***  0.0782***  0.0862***  0.0960***  0.1052**  0.1155**  0.1276 0.1359 

Lag 1, Core 0 0.0429***  0.0566***  0.0683***  0.0774***  0.0871***  0.0957**  0.1066*  0.1183 0.1284 0.1379 

Lag 3, Core 0 0.0438***  0.0580***  0.0698***  0.0809**  0.0898***  0.1042 0.1064 0.1220 0.1326 0.1500 

Lag 5, Core 0 0.0466 0.0605***  0.0718 0.0810 0.0924 0.1018 0.1124 0.1212 0.1423 0.1483 

Lag 0, Core 1 0.0416***  0.0547***  0.0665***  0.0758***  0.0858***  0.0955***  0.1057**  0.1170 0.1258 0.1370 

Lag 1, Core 1 0.0412***  0.0569***  0.0674***  0.0790***  0.0873***  0.0955**  0.1068 0.1189 0.1305 0.1403 

Lag 3, Core 1 0.0421***  0.0567***  0.0701***  0.0815*  0.0948 0.1021 0.1132 0.1248 0.1401 0.1552 

Lag 5, Core 1 0.0439***  0.0591***  0.0729 0.0838 0.0920 0.1063 0.1079 0.1234 0.1380 0.1545 

Disaggregation level 4                     

Lag 0, Core 0 0.0429***  0.0573***  0.0687***  0.0781***  0.0865***  0.0940***  0.1041***  0.1151***  0.1274 0.1367 

Lag 1, Core 0 0.0430***  0.0567***  0.0699***  0.0785***  0.0879***  0.0980**  0.1062**  0.1174 0.1319 0.1435 

Lag 3, Core 0 0.0446**  0.0586***  0.0684***  0.0818 0.0900*  0.1009 0.1122 0.1238 0.1376 0.1485 

Lag 5, Core 0 0.0462 0.0605*  0.0737 0.0827 0.0924 0.1068 0.1137 0.1384 0.1468 0.1593 

Lag 0, Core 1 0.0419***  0.0548***  0.0674***  0.0773***  0.0871***  0.0944***  0.1052***  0.1150***  0.1254*  0.1404 

Lag 1, Core 1 0.0486 0.0571***  0.0681***  0.0775***  0.0857***  0.0966**  0.1090 0.1184 0.1304 0.1461 

Lag 3, Core 1 0.0435***  0.0602***  0.0708**  0.0804***  0.0890***  0.1015 0.1135 0.1166 0.1362 0.1534 

Lag 5, Core 1 0.0618 0.0595***  0.0756 0.0822 0.0937*  0.1101 0.1218 0.1303 0.1412 0.1562 
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Table 4. Association between Financial Statement Analysis Design Choices and Median Absolute Profitability Forecast Errors from Neural 

Network Estimation of NP’s Framework 
Panel A (Panel B) regresses median absolute ROCE (RNOA) forecast errors on indicators for levels of ratio disaggregation (Level 2 to 4), an indicator that the 

model focuses on core items (Core), and indicators for lags of financial statement information (Lags 1 to 5). Robust t-statistics are reported in parentheses. ***, 

**, and * denote significance at the 1%, 5%, and 10% levels, respectively. 
 

Panel A. ROCE 
  Median Absolute ROCE Forecast Error Lead 

  1 2 3 4 5 6 7 8 9 10 

Level 2 -0.004 -0.009 0.000 0.001 0.001 0.002** 0.001 0.001 0.003* 0.002 

  (-1.160) (-1.216) (0.428) (1.508) (0.849) (2.275) (1.286) (0.539) (2.003) (1.135) 

Level 3 -0.004 -0.010 0.001 0.002* 0.002** 0.002 0.005*** 0.004** 0.007*** 0.004 

  (-1.462) (-1.359) (0.825) (1.951) (2.597) (1.632) (3.055) (2.085) (4.890) (1.332) 

Level 4 -0.002 -0.009 0.003*** 0.002* 0.000 0.003** 0.005*** 0.010*** 0.010*** 0.013*** 
  (-0.780) (-1.240) (2.808) (1.917) (0.444) (2.700) (3.178) (3.784) (5.176) (3.489) 

Core -0.004** -0.003 0.000 -0.001 -0.001* 0.000 -0.001 0.001 -0.000 0.001 

  (-2.135) (-0.694) (0.229) (-1.008) (-1.770) (0.279) (-0.688) (0.514) (-0.153) (0.439) 
Lags 1 0.002 -0.006 0.000 0.001 -0.000 0.001 0.000 0.003 0.001 0.004* 

  (1.269) (-0.831) (0.286) (1.302) (-0.185) (0.941) (0.297) (1.381) (0.570) (1.924) 

Lags 3 0.005* -0.007 0.002** 0.003*** 0.002*** 0.002* 0.004*** 0.009*** 0.010*** 0.013*** 
  (1.901) (-1.025) (2.413) (3.106) (2.916) (2.052) (3.189) (4.274) (6.368) (4.082) 

Lags 5 0.004** -0.006 0.004*** 0.006*** 0.003*** 0.006*** 0.010*** 0.010*** 0.015*** 0.015*** 

  (2.538) (-0.886) (2.967) (6.178) (3.319) (4.415) (6.101) (3.409) (7.792) (4.051) 

Observations 32 32 32 32 32 32 32 32 32 32 

R-Squared 0.359 0.224 0.536 0.705 0.589 0.621 0.772 0.687 0.852 0.669 
 

Panel B. RNOA 
  Median Absolute RNOA Forecast Error Lead 

  1 2 3 4 5 6 7 8 9 10 

Level 2 -0.014*** -0.010*** -0.007*** -0.005*** -0.005*** -0.004*** -0.002** -0.004 -0.001 -0.001 

  (-13.532) (-23.032) (-10.394) (-9.361) (-8.002) (-3.678) (-2.274) (-1.619) (-0.422) (-0.651) 

Level 3 -0.014*** -0.011*** -0.007*** -0.005*** -0.004*** -0.002* -0.002* -0.002 0.004** 0.003** 
  (-13.230) (-22.615) (-10.088) (-7.505) (-4.864) (-1.778) (-1.850) (-0.746) (2.732) (2.302) 

Level 4 -0.011*** -0.010*** -0.006*** -0.005*** -0.004*** -0.002 0.001 -0.000 0.005*** 0.006*** 

  (-4.965) (-17.591) (-6.880) (-10.091) (-7.446) (-1.072) (0.373) (-0.054) (3.628) (4.302) 
Core 0.001 -0.000 0.000 -0.000 0.000 0.000 0.001 0.001 0.000 0.001 

  (0.691) (-1.537) (0.229) (-0.390) (0.458) (0.212) (0.693) (0.531) (0.394) (1.140) 

Lags 1 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.003** 0.003** 

  (1.208) (1.543) (0.721) (0.808) (1.109) (0.599) (1.573) (1.241) (2.344) (2.601) 

Lags 3 0.001 0.002*** 0.002** 0.003*** 0.003*** 0.004*** 0.004*** 0.004** 0.007*** 0.011*** 

  (1.164) (3.703) (2.742) (4.746) (3.698) (3.584) (3.838) (2.640) (5.479) (7.005) 
Lags 5 0.005** 0.003*** 0.004*** 0.005*** 0.005*** 0.007*** 0.007*** 0.012*** 0.012*** 0.013*** 

  (2.208) (8.766) (5.469) (7.611) (8.257) (4.593) (4.582) (4.058) (7.145) (8.140) 

Observations 32 32 32 32 32 32 32 32 32 32 

R-Squared 0.822 0.972 0.896 0.900 0.826 0.684 0.645 0.599 0.823 0.850 
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Table 5. Median Absolute Forecast Errors from Neural Network Estimation of NP’s Framework Compared to Linear Estimation 
Panel A (Panel B) presents out-of-sample 1-year-ahead to 10-year-ahead median absolute ROCE (RNOA) forecast errors of linear (OLS) models based on various 

combinations of financial statement analysis design choices within Nissim and Penman’s (2001) profitability framework. Standard errors are computed following 

Mann and Whitney (1947). *, **, and *** indicate that the median absolute neural network profitability forecast error reported in Table 3 is significantly smaller 

at the 10%, 5%, and 1% levels, respectively, than the OLS forecast errors reported in this table.  
 

Panel A. ROCE 
  Median Absolute ROCE Forecast Error Lead 
  1 2 3 4 5 6 7 8 9 10 

Disaggregation level 1                     

Lag 0, Core 0 0.0937***  0.0898 0.1227***  0.1248***  0.1324***  0.2254***  0.1556***  0.2161***  0.2370***  0.2920***  

Lag 1, Core 0 0.0932***  0.0899***  0.1229***  0.1250***  0.1329***  0.2246***  0.1566***  0.2170***  0.2359***  0.2885***  

Lag 3, Core 0 0.0920***  0.0906***  0.1227***  0.1246***  0.1329***  0.2223***  0.1580***  0.2161***  0.2365***  0.2888***  

Lag 5, Core 0 0.0916***  0.0906***  0.1228***  0.1246***  0.1327***  0.2226***  0.1589***  0.2163***  0.2360***  0.2872***  

Lag 0, Core 1 0.0937***  0.0898***  0.1227***  0.1248***  0.1324***  0.2254***  0.1556***  0.2161***  0.2370***  0.2920***  

Lag 1, Core 1 0.0932***  0.0899 0.1229***  0.1250***  0.1329***  0.2246***  0.1566***  0.2170***  0.2359***  0.2885***  

Lag 3, Core 1 0.0920***  0.0906***  0.1227***  0.1246***  0.1329***  0.2223***  0.1580***  0.2161***  0.2365***  0.2888***  

Lag 5, Core 1 0.0916***  0.0906***  0.1228***  0.1246***  0.1327***  0.2226***  0.1589***  0.2163***  0.2360***  0.2872***  

Disaggregation level 2                     

Lag 0, Core 0 0.0909***  0.1422***  0.1569***  0.1522***  0.1374***  0.2399***  0.1719***  0.2273***  0.2301***  0.2924***  

Lag 1, Core 0 0.0905***  0.1381***  0.1565***  0.1470***  0.1370***  0.2336***  0.1683***  0.2241***  0.2259***  0.2851***  

Lag 3, Core 0 0.0890***  0.1303***  0.1477***  0.1399***  0.1361***  0.2263***  0.1655***  0.2204***  0.2242***  0.2761***  

Lag 5, Core 0 0.0889***  0.1236***  0.1388***  0.1353***  0.1367***  0.2149***  0.1645***  0.2156***  0.2191***  0.2675***  

Lag 0, Core 1 0.0867***  0.1377***  0.1530***  0.1473***  0.1345***  0.2376***  0.1644***  0.2266***  0.2270***  0.2877***  

Lag 1, Core 1 0.0851***  0.1311***  0.1504***  0.1408***  0.1347***  0.2320***  0.1627***  0.2235***  0.2249***  0.2821***  

Lag 3, Core 1 0.0839***  0.1245***  0.1424***  0.1348***  0.1338***  0.2250***  0.1631***  0.2211***  0.2248***  0.2744***  

Lag 5, Core 1 0.0839***  0.1182***  0.1338***  0.1307***  0.1342***  0.2125***  0.1622***  0.2163***  0.2196***  0.2675***  

Disaggregation level 3                     

Lag 0, Core 0 0.0924***  0.1426***  0.1579***  0.1532***  0.1379***  0.2393***  0.1717***  0.2266***  0.2312***  0.2922***  

Lag 1, Core 0 0.0923***  0.1404***  0.1596***  0.1502***  0.1378***  0.2342***  0.1683***  0.2225***  0.2260***  0.2854***  

Lag 3, Core 0 0.0918***  0.1362***  0.1537***  0.1464***  0.1380***  0.2278***  0.1687***  0.2189***  0.2255***  0.2797***  

Lag 5, Core 0 0.0924***  0.1287***  0.1442***  0.1416***  0.1381***  0.2170***  0.1668***  0.2149***  0.2195***  0.2683***  

Lag 0, Core 1 0.0915***  0.1425***  0.1579***  0.1526***  0.1382***  0.2400***  0.1721***  0.2281***  0.2313***  0.2925***  

Lag 1, Core 1 0.0924***  0.1402***  0.1593***  0.1496***  0.1379***  0.2345***  0.1684***  0.2223***  0.2269***  0.2844***  

Lag 3, Core 1 0.0930***  0.1363***  0.1538***  0.1460***  0.1385***  0.2306***  0.1684***  0.2219***  0.2267***  0.2772***  

Lag 5, Core 1 0.0924***  0.1292***  0.1442***  0.1416***  0.1380***  0.2154***  0.1666***  0.2156***  0.2209***  0.2662***  

Disaggregation level 4                     

Lag 0, Core 0 0.0867***  0.1348***  0.1500***  0.1449***  0.1361***  0.2415***  0.1624***  0.2241***  0.2253***  0.2875***  

Lag 1, Core 0 0.0851***  0.1196***  0.1399***  0.1355***  0.1367***  0.2314***  0.1612***  0.2232***  0.2241***  0.2796***  

Lag 3, Core 0 0.0873***  0.1177***  0.1341***  0.1346***  0.1402***  0.2199***  0.1893***  0.2232***  0.2290***  0.2675***  

Lag 5, Core 0 0.0875***  0.1145***  0.1307***  0.1337***  0.1407***  0.2113***  0.1887***  0.2227***  0.2258***  0.2647***  

Lag 0, Core 1 0.0849***  0.1317***  0.1471***  0.1439***  0.1368***  0.2397***  0.1615***  0.2249***  0.2277***  0.2878***  

Lag 1, Core 1 0.0850***  0.1200***  0.1399***  0.1359***  0.1390***  0.2320***  0.1628***  0.2248***  0.2269***  0.2792***  

Lag 3, Core 1 0.0886***  0.1168***  0.1361***  0.1351***  0.1443***  0.2286***  0.1915***  0.2290***  0.2328***  0.2714***  

Lag 5, Core 1 0.0892***  0.1131***  0.1315***  0.1349***  0.1442***  0.2165***  0.1916***  0.2255***  0.2297***  0.2688***  
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Panel B. RNOA 
  Median Absolute RNOA Forecast Error Lead 
  1 2 3 4 5 6 7 8 9 10 

Disaggregation level 1                     

Lag 0, Core 0 0.0866***  0.0971***  0.1094***  0.1220***  0.1362***  0.1508***  0.1724***  0.2011***  0.2219***  0.2507***  

Lag 1, Core 0 0.0871***  0.0970***  0.1089***  0.1216***  0.1356***  0.1504***  0.1717***  0.2000***  0.2200***  0.2503***  

Lag 3, Core 0 0.0866***  0.0963***  0.1082***  0.1210***  0.1355***  0.1500***  0.1710***  0.1997***  0.2194***  0.2498***  

Lag 5, Core 0 0.0865***  0.0958***  0.1084***  0.1210***  0.1353***  0.1502***  0.1711***  0.1998***  0.2197***  0.2500***  

Lag 0, Core 1 0.0866***  0.0971***  0.1094***  0.1220***  0.1362***  0.1508***  0.1724***  0.2011***  0.2219***  0.2507***  

Lag 1, Core 1 0.0871***  0.0970***  0.1089***  0.1216***  0.1356***  0.1504***  0.1717***  0.2000***  0.2200***  0.2503***  

Lag 3, Core 1 0.0866***  0.0963***  0.1082***  0.1210***  0.1355***  0.1500***  0.1710***  0.1997***  0.2194***  0.2498***  

Lag 5, Core 1 0.0865***  0.0958***  0.1084***  0.1210***  0.1353***  0.1502***  0.1711***  0.1998***  0.2197***  0.2500***  

Disaggregation level 2                     

Lag 0, Core 0 0.0826***  0.0984***  0.0996***  0.1196***  0.1316***  0.1445***  0.1874***  0.1981***  0.1905***  0.3038***  

Lag 1, Core 0 0.0799***  0.0951***  0.0976***  0.1160***  0.1292***  0.1401***  0.1696***  0.2237***  0.2140***  0.3826***  

Lag 3, Core 0 0.0767***  0.0912***  0.0955***  0.1143***  0.1283***  0.1376***  0.1650***  0.2221***  0.2146***  0.3724***  

Lag 5, Core 0 0.0774***  0.0909***  0.0960***  0.1153***  0.1305***  0.1387***  0.1660***  0.2331***  0.2188***  0.3849***  

Lag 0, Core 1 0.0685***  0.0837***  0.0996***  0.1172***  0.1329***  0.1419***  0.1601***  0.2856***  0.2432***  0.4116***  

Lag 1, Core 1 0.0671***  0.0819***  0.0984***  0.1145***  0.1292***  0.1407***  0.1786***  0.2888***  0.2824***  0.4275***  

Lag 3, Core 1 0.0671***  0.0809***  0.0987***  0.1155***  0.1322***  0.1422***  0.1790***  0.2805***  0.2725***  0.4129***  

Lag 5, Core 1 0.0676***  0.0814***  0.1004***  0.1165***  0.1338***  0.1445***  0.1805***  0.2848***  0.2744***  0.4178***  

Disaggregation level 3                     

Lag 0, Core 0 0.1083***  0.1033***  0.1125***  0.1223***  0.1285***  0.1436***  0.1783***  0.1549***  0.1782***  0.1716***  

Lag 1, Core 0 0.0977***  0.0968***  0.1054***  0.1149***  0.1221***  0.1369***  0.1728***  0.1520***  0.1736***  0.1697***  

Lag 3, Core 0 0.0914***  0.0946***  0.1014***  0.1122***  0.1219***  0.1386***  0.1865***  0.1691***  0.1940***  0.2000***  

Lag 5, Core 0 0.0892***  0.0926***  0.1007***  0.1109***  0.1214***  0.1380***  0.1853***  0.1706***  0.1974***  0.2059***  

Lag 0, Core 1 0.1075***  0.1107***  0.1180***  0.1276***  0.1356***  0.1496***  0.1819***  0.1974***  0.2062***  0.2338***  

Lag 1, Core 1 0.1012***  0.1052***  0.1126***  0.1227***  0.1306***  0.1446***  0.1757***  0.2173***  0.2067***  0.2681***  

Lag 3, Core 1 0.0975***  0.1028***  0.1083***  0.1202***  0.1292***  0.1442***  0.1807***  0.2224***  0.2154***  0.2849***  

Lag 5, Core 1 0.0951***  0.1042***  0.1078***  0.1199***  0.1313***  0.1486***  0.1866***  0.2422***  0.2386***  0.3151***  

Disaggregation level 4                     

Lag 0, Core 0 0.0771***  0.0795***  0.0899***  0.1053***  0.1320***  0.1454***  0.1747***  0.1595***  0.2078***  0.2242***  

Lag 1, Core 0 0.0747***  0.0831***  0.0935***  0.1104***  0.1415***  0.1601***  0.2130***  0.1839***  0.2315***  0.2421***  

Lag 3, Core 0 0.0822***  0.0930***  0.1089***  0.1284***  0.1631***  0.1852***  0.2350***  0.2372***  0.3076***  0.3151***  

Lag 5, Core 0 0.0873***  0.0998***  0.1147***  0.1317***  0.1642***  0.1850***  0.2403***  0.2461***  0.3145***  0.3197***  

Lag 0, Core 1 0.0768***  0.0853***  0.0922***  0.1073***  0.1385***  0.1564***  0.1901***  0.4367***  0.3581***  0.6634***  

Lag 1, Core 1 0.0839***  0.0881***  0.0963***  0.1151***  0.1476***  0.1650***  0.2092***  0.4265***  0.3527***  0.6538***  

Lag 3, Core 1 0.0979***  0.1055***  0.1119***  0.1375***  0.1676***  0.1885***  0.2318***  0.5051***  0.3969***  0.7282***  

Lag 5, Core 1 0.1011***  0.1124***  0.1181***  0.1397***  0.1671***  0.1893***  0.2391***  0.5397***  0.4277***  0.7753***  
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Table 6. Association Between Financial Statement Analysis Design Choices and Nonlinearities in 

Neural Network Estimation of Nissim and Penman’s (2001) Framework 
Panel A (Panel B) regresses median absolute ROCE (RNOA) forecast errors reported in Panel A (Panel B) of Table 

3 (neural network estimation) and Table 6 (OLS estimation) on indicators for ratio disaggregation (Level 2 to 3), an 

indicator that the model focuses on core items (Core), and indicators for lags of financial statement information (Lags 

1 to 5) interacted with an indicator that the model is estimated via a neural network rather than OLS (NN). Main 

coefficients for design choices are suppressed to enhance readability. Robust t-statistics are reported in parentheses. 

***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

 

Panel A. ROCE 
  Lead 

  1 2 3 4 5 6 7 8 9 10 

NN -0.030*** -0.002 -0.038*** -0.028*** -0.016*** -0.105*** -0.017*** -0.069*** -0.075*** -0.121*** 

  (-10.236) (-0.194) (-12.960) (-11.053) (-13.061) (-30.903) (-5.170) (-26.726) (-36.857) (-34.432) 

Level 2 × NN 0.002 -0.049*** -0.024*** -0.015*** -0.002** -0.002 -0.007*** -0.004* 0.015*** 0.012*** 

  (0.475) (-6.368) (-9.292) (-6.832) (-2.163) (-0.726) (-2.762) (-2.002) (7.838) (4.265) 

Level 3 × NN -0.004 -0.057*** -0.030*** -0.021*** -0.003*** -0.004 -0.007*** -0.001 0.017*** 0.012*** 

  (-1.319) (-7.352) (-11.834) (-11.759) (-3.658) (-1.434) (-2.742) (-0.677) (9.686) (3.278) 

Level 4 × NN 0.003 -0.040*** -0.013*** -0.011*** -0.007*** -0.001 -0.014*** 0.002 0.019*** 0.026*** 

  (1.034) (-5.120) (-5.080) (-5.452) (-4.665) (-0.169) (-2.878) (0.563) (7.893) (5.958) 

Core × NN -0.003 -0.001 0.001 0.001 -0.001 -0.000 0.000 -0.000 -0.001 0.001 

  (-1.409) (-0.240) (0.917) (0.557) (-1.318) (-0.129) (0.017) (-0.107) (-0.666) (0.534) 

Lags 1 × NN 0.002 -0.001 0.002 0.005*** -0.001 0.006*** 0.002 0.005* 0.003* 0.010*** 

  (1.364) (-0.094) (1.097) (2.900) (-0.497) (2.872) (0.391) (1.991) (1.726) (3.839) 

Lags 3 × NN 0.006* 0.002 0.009*** 0.010*** 0.001 0.013*** -0.002 0.012*** 0.012*** 0.025*** 

  (1.941) (0.222) (4.552) (5.533) (0.842) (5.605) (-0.471) (4.710) (5.582) (6.927) 

Lags 5 × NN 0.005** 0.007 0.017*** 0.015*** 0.002 0.025*** 0.005 0.016*** 0.020*** 0.033*** 

  (2.467) (0.936) (5.978) (7.237) (1.202) (7.851) (1.077) (4.701) (7.971) (7.537) 

                      

Observations 64 64 64 64 64 64 64 64 64 64 

R-Squared 0.952 0.912 0.988 0.983 0.976 0.996 0.870 0.990 0.990 0.990 

 

Panel B. RNOA 
  Lead 

  1 2 3 4 5 6 7 8 9 10 

NN -0.032*** -0.029*** -0.032*** -0.036*** -0.040*** -0.046*** -0.056*** -0.017 -0.053*** -0.018 

  (-9.883) (-8.564) (-11.397) (-10.451) (-11.111) (-9.917) (-7.531) (-0.503) (-2.705) (-0.362) 

Level 2 × NN -0.001 -0.002 0.003** 0.000 0.000 0.005* -0.004 -0.056** -0.019 -0.140*** 

  (-0.269) (-0.596) (2.239) (0.096) (0.027) (1.811) (-0.719) (-2.453) (-1.454) (-3.851) 

Level 3 × NN -0.026*** -0.015*** -0.006** -0.002 0.004 0.005* -0.012*** 0.008 0.023* 0.022 

  (-9.289) (-6.172) (-2.366) (-0.760) (1.564) (1.713) (-3.272) (0.331) (1.725) (0.685) 

Level 4 × NN -0.009** -0.007 -0.000 -0.005 -0.021*** -0.023*** -0.045*** -0.142*** -0.099*** -0.234*** 

  (-2.138) (-1.637) (-0.011) (-1.097) (-4.615) (-4.137) (-5.877) (-3.330) (-4.652) (-3.491) 

Core × NN 0.000 -0.002 -0.003 -0.003 -0.004 -0.004 -0.001 -0.098*** -0.052*** -0.143*** 

  (0.131) (-0.717) (-1.188) (-1.253) (-1.358) (-1.158) (-0.130) (-4.407) (-4.606) (-4.027) 

Lags 1 × NN 0.003 0.002 0.002 0.001 0.001 0.000 -0.004 -0.006 -0.007 -0.014 

  (0.868) (0.544) (0.459) (0.321) (0.178) (0.009) (-0.579) (-0.204) (-0.380) (-0.283) 

Lags 3 × NN 0.002 0.001 0.000 -0.001 -0.002 -0.002 -0.008 -0.021 -0.019 -0.027 

  (0.525) (0.304) (0.092) (-0.166) (-0.480) (-0.473) (-1.090) (-0.671) (-1.206) (-0.544) 

Lags 5 × NN 0.005 0.001 0.001 0.001 -0.001 -0.001 -0.008 -0.023 -0.023 -0.038 

  (1.076) (0.269) (0.334) (0.148) (-0.230) (-0.122) (-1.025) (-0.704) (-1.325) (-0.728) 

                      

Observations 64 64 64 64 64 64 64 64 64 64 

R-Squared 0.947 0.933 0.947 0.946 0.966 0.962 0.964 0.828 0.928 0.828 
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Table 7. Cross-Sectional Analysis of the Importance of Different Financial Statement Analysis Design 

Choices 
Panel A (Panel B) presents fully interacted firm-year-model level median regressions of 1-year-ahead absolute ROCE 

(RNOA) NN forecast errors on firm-year fixed effects and indicators for ratio disaggregation (Level 2 to 3), an 

indicator that the model focuses on core items (Core), and indicators for lags of financial statement information (Lags 

1 to 5) interacted with indicators that the firm-year observations’ ROCE is an extreme ROCE decile (Outlier), that the 

firm operates in a competitive industry (Competition), and for different stages of a firm’s lifecycle (Introduction, 

Growth, Maturity, Decline, Shakeout) measured following Dickinson (2011). We suppress the main coefficients of 

different financial statement analysis design choices to enhance readability. Robust t-statistics clustered at the firm 

level are reported in parentheses. Standard errors are clustered by firm. ***, **, and * denote statistical significance 

at the 1%, 5%, and 10% levels, respectively. 

Panel A. ROCE 
  Cross Sectional Variable 

  Outlier Competition Introduction Growth Maturity Decline Shakeout 

                

Level 2 × Cross Sectional Variable -0.003*** -0.000 0.000 0.000** 0.000** -0.006*** -0.002*** 

  (-7.103) (-1.315) (0.769) (2.041) (2.296) (-5.064) (-4.551) 

Level 3 × Cross Sectional Variable -0.003*** -0.000*** 0.001** 0.000** 0.000 -0.004*** -0.002*** 

  (-5.593) (-2.655) (2.426) (2.217) (1.423) (-3.176) (-6.057) 

Level 4 × Cross Sectional Variable -0.002*** -0.001*** 0.002*** 0.000 0.000 -0.003*** -0.002*** 

  (-4.479) (-4.346) (4.830) (1.075) (0.515) (-2.612) (-3.961) 

Core × Cross Sectional Variable -0.005*** 0.000 -0.001 0.000** 0.001*** -0.007*** -0.002*** 
  (-10.279) (0.894) (-1.480) (2.042) (4.239) (-6.446) (-5.596) 

Lags 1 × Cross Sectional Variable -0.000 0.000 0.000 0.000 0.000 -0.001* -0.000 
  (-0.694) (1.367) (0.124) (0.310) (0.607) (-1.887) (-0.591) 

Lags 3 × Cross Sectional Variable 0.001** 0.000 -0.001 -0.000 0.000 -0.001 0.000 
  (2.292) (0.152) (-1.181) (-0.803) (1.365) (-0.807) (0.390) 

Lags 5 × Cross Sectional Variable 0.003*** -0.000 0.001** -0.000*** -0.000 0.002** 0.001*** 

  (5.283) (-1.480) (2.396) (-3.166) (-0.333) (2.281) (2.850) 

                

Observations 991,680 991,680 991,680 991,680 991,680 991,680 991,680 

R-Squared 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Panel B. RNOA 
  Cross Sectional Variable 
  Outlier Competition Introduction Growth Maturity Decline Shakeout 

                

Level 2 × Cross Sectional Variable -0.014*** -0.000 0.001 0.001*** -0.000 -0.003** -0.002*** 

  (-9.645) (-0.485) (1.422) (3.131) (-1.151) (-2.208) (-3.238) 

Level 3 × Cross Sectional Variable -0.014*** -0.000 0.002** 0.001*** -0.000 -0.002* -0.003*** 

  (-9.533) (-0.987) (2.252) (3.197) (-1.215) (-1.780) (-3.850) 

Level 4 × Cross Sectional Variable -0.012*** -0.001 0.003*** 0.001*** -0.001* -0.001 -0.002*** 

  (-7.977) (-1.258) (2.970) (2.872) (-1.746) (-0.635) (-3.042) 

Core × Cross Sectional Variable -0.003*** 0.000 -0.001 0.000 0.001*** -0.006*** -0.002*** 

  (-7.884) (1.605) (-1.362) (0.489) (5.762) (-6.592) (-5.255) 

Lags 1 × Cross Sectional Variable -0.001* -0.000 -0.000 -0.000 0.000 -0.001* -0.000 

  (-1.669) (-0.335) (-0.161) (-0.072) (1.051) (-1.874) (-0.517) 

Lags 3 × Cross Sectional Variable -0.001*** -0.000 -0.001 -0.000 0.000 -0.002** 0.000 

  (-2.607) (-0.858) (-1.503) (-0.940) (1.418) (-2.236) (1.059) 

Lags 5 × Cross Sectional Variable 0.002*** -0.001*** 0.000 -0.000 0.000 -0.001 0.000 

  (4.539) (-3.189) (0.562) (-1.249) (0.024) (-0.729) (1.617) 

                
Observations 991,680 991,680 991,680 991,680 991,680 991,680 991,680 

R-Squared 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 8. Cross-Sectional Analysis of the Importance of Nonlinear Estimation 
Panel A (Panel B) presents fully interacted firm-year-model level median regressions of 1-year-ahead absolute ROCE 

(RNOA) forecast errors on firm-year-model fixed effects and an indicator that the model is estimated via a neural 

network rather than OLS (NN) interacted with indicators that the firm-year observations’ ROCE is an extreme ROCE 

decile (Outlier), that the firm operates in a competitive industry (Competition), and for different stages of a firm’s 

lifecycle (Introduction, Growth, Maturity, Decline, Shakeout) measured following Dickinson (2011). Robust t-

statistics clustered at the firm level are reported in parentheses. Standard errors are clustered by firm. ***, **, and * 

denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

 

Panel A. ROCE 

  Cross Sectional Variable 

  Outlier Competition Introduction Growth Maturity Decline Shakeout 

        

Cross Sectional Variable × NN -0.083*** 0.009*** -0.031*** 0.005*** 0.005*** -0.040*** -0.008***  
(-35.364) (7.285) (-9.313) (5.017) (4.474) (-8.864) (-4.429) 

NN -0.018*** -0.029*** -0.023*** -0.025*** -0.026*** -0.023*** -0.023***  
(-31.530) (-29.442) (-31.897) (-30.902) (-28.233) (-32.502) (-31.371) 

                

Observations 1,983,360 1,983,360 1,983,360 1,983,360 1,983,360 1,983,360 1,983,360 

R-Squared 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

Panel B. RNOA 

  Cross Sectional Variable 

  Outlier Competition Introduction Growth Maturity Decline Shakeout 

        

Cross Sectional Variable × NN -0.046*** 0.000 -0.011*** 0.003*** 0.002*** -0.022*** -0.008***  
(-26.016) (0.293) (-4.910) (4.560) (3.835) (-6.865) (-6.495) 

NN -0.028*** -0.032*** -0.031*** -0.032*** -0.033*** -0.031*** -0.031***  
(-63.466) (-48.781) (-67.412) (-62.478) (-56.110) (-67.881) (-65.808) 

                

Observations 1,983,360 1,983,360 1,983,360 1,983,360 1,983,360 1,983,360 1,983,360 

R-Squared 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 9. Alphas Based on Neural Network Estimation of NP’s Framework 
The table presents Fama and French (2015) alphas for portfolios based on profitability forecasts derived from various combinations of financial statement analysis 

design choices within Nissim and Penman’s (2001) profitability framework. Financial statement analysis design choices include ratio disaggregation (Level 2 to 

3), focus on core items (Core), and lags of financial statement information (Lag 1 to 5). Standard errors are computed following Newey and West (1987) with a 

lag order of 3. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

 

Panel A. ROCE 

  Core 0, Level 1 Core 1, Level 1 Core 0, Level 2 Core 1, Level 2 Core 0, Level 3 Core 1, Level 3 Core 0, Level 4 Core 1, Level 4 Random Walk 

Lags 0, Leads 1 -0.0277 -0.0469** -0.0528** -0.0328** -0.0501*** -0.0295 -0.0465** -0.0365 

-0.04233 

Lags 0, Leads 5 -0.0345 -0.0059 -0.0154 -0.0185 -0.0268 -0.0066 -0.0095 -0.0232 

Lags 0, Leads 10 -0.0044 0.0230 -0.0229 -0.0618* 0.0024 -0.0255 -0.0351 -0.0268 

Lags 1, Leads 1 -0.0366** -0.0451* -0.0489** -0.0406** -0.0535* -0.0297 -0.0440 -0.031* 

Lags 1, Leads 5 -0.0041 -0.0056 -0.0376 -0.0082 -0.0073 -0.0563 0.0122 -0.0031 

Lags 1, Leads 10 -0.0626** -0.1068*** -0.0123 -0.0526 -0.0575*** -0.0006 -0.0195 -0.0345 

Lags 3, Leads 1 -0.0593* -0.0260 -0.0306 -0.0312 -0.0421* -0.0255 -0.0316 -0.0425* 

Lags 3, Leads 5 -0.0030 -0.0141 -0.0296 -0.0101 -0.0340 -0.0192 -0.0357 -0.0438 

Lags 3, Leads 10 -0.0701** 0.0069 -0.0637** -0.0432* -0.0032 -0.0186 -0.0439* -0.0043 

Lags 5, Leads 1 -0.0423** -0.0327** -0.043** -0.0273 -0.0331 -0.0356 -0.0365 -0.0290 

Lags 5, Leads 5 -0.0178 0.0199 -0.0527** -0.0230 -0.0343 -0.0424 -0.0168 -0.0361 

Lags 5, Leads 10 -0.0297 -0.061** -0.0242 -0.0287 -0.0782** -0.0491 -0.0447 -0.0727* 

 

Panel B. RNOA 
  Core 0, Level 1 Core 1, Level 1 Core 0, Level 2 Core 1, Level 2 Core 0, Level 3 Core 1, Level 3 Core 0, Level 4 Core 1, Level 4 Random Walk 

Lags 0, Leads 1 0.0546** 0.0558** 0.0178 0.0091 0.0208 0.0173 0.0139 0.0197 

0.0212 

Lags 0, Leads 5 0.0708** 0.0782*** 0.0402* 0.0406** 0.0522** 0.0392* 0.0352** 0.0488*** 

Lags 0, Leads 10 0.0332 0.0521 -0.0250 -0.0029 0.0054 0.0116 -0.0042 -0.0442 

Lags 1, Leads 1 0.0524** 0.0309 0.0113 0.0129 0.0232 0.0108 0.0186 0.0073 

Lags 1, Leads 5 0.0367** 0.0158 0.0446* 0.0444* 0.0477*** 0.0549*** 0.0608*** 0.0343 

Lags 1, Leads 10 0.0256* -0.0080 -0.0073 0.0326** 0.0052 -0.0047 -0.0265 0.0009 

Lags 3, Leads 1 0.0453* 0.0512** 0.0073 0.0217 0.0158 0.0135 0.0352* 0.0203 

Lags 3, Leads 5 0.0704 0.0707** 0.0108 0.0425** 0.053*** 0.0185 0.0219 0.0257 

Lags 3, Leads 10 0.0333 0.0051 0.0161 -0.0038 -0.0264 -0.0621** -0.0199 -0.0393*** 

Lags 5, Leads 1 0.0491* 0.0445* 0.0126 0.0112 0.0297 0.0188 0.0199 0.0053 

Lags 5, Leads 5 0.0989*** 0.0586* 0.0041 0.0162 0.0242* 0.0150 0.0135 0.0308 

Lags 5, Leads 10 0.0125 0.0378 0.0036 0.0197 0.0020 -0.0629** 0.0073 0.0280 

 


