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Abstract

In non-life insurance, insurers use experience rating to adjust premiums to reflect policy-

holders’ previous claim experience. Performing prospective experience rating can be challenging

when the claim distribution is complex. For instance, insurance claims are semicontinuous in

that a fraction of zeros is often associated with an otherwise positive continuous outcome from

a right-skewed and long-tailed distribution. Practitioners use credibility premium that is a spe-

cial form of the shrinkage estimator in the longitudinal data framework. However, the linear

predictor is not informative especially when the outcome follows a mixed distribution.

In this article, we introduce a mixed vine pair copula construction framework for modeling

semicontinuous longitudinal claims. In the proposed framework, a two-component mixture re-

gression is employed to accommodate the zero inflation and thick tails in the claim distribution.

The temporal dependence among repeated observations is modeled using a sequence of bivari-

ate conditional copulas based on a mixed D-vine. We emphasize that the resulting predictive

distribution allows insurers to incorporate past experience into future premiums in a nonlinear

fashion and the classic linear predictor can be viewed as a nested case.

In the application, we examine a unique claims dataset of government property insurance

from the state of Wisconsin. Due to the discrepancies between the claim and premium distri-

butions, we employ an ordered Lorenz curve to evaluate the predictive performance. We show

that the proposed approach offers substantial opportunities for separating risks and identifying

profitable business when compared with alternative experience rating methods.

Keywords: Government insurance, Mixed D-vine, Mixture regression, Predictive distribution,

Zero inflation
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1 Introduction

In non-life (property, liability, and health) insurance, insurers use experience rating to adjust premi-

ums to reflect policyholders’ past loss experience. Premiums decrease (increase) if the experience of

a policyholder is better (worse) than that assumed in the manual rate - a premium rate developed

from the experience of a large number of homogeneous policies defined by the insurer’s risk classifi-

cation system. Experience rating can be prospective or retrospective. We restrict our consideration

to the former that points to a predictive modeling application.

Experience rating improves insurance market efficiency as a dynamic contract mechanism un-

der information asymmetry, therefore providing a competitive advantage for insurers deft at its

employment over the rival firms. First, an insurer’s risk classification system might not be perfect.

Unobserved heterogeneity remains after all underwriting criteria are accounted for. Experience rat-

ing allows insurers to further separate good risks from bad risks, and thus helps mitigate adverse

selection. Second, adjusting premium based on past experience gives policyholders incentives for

loss prevention, which is known as moral hazard in the economics literature.

The statistical component of experience rating is to model longitudinal insurance claims and

to infer the predictive distribution of future claims given previous loss experience. This can be a

difficult task when the risk distribution is complex. For instance, the distribution of claims is well

known to be a mixture of zeros and a right-skewed and long-tailed distribution. The degenerate

distribution at zero corresponds to no claims and the positive thick-tailed distribution describes the

amount of claims given occurrence. In the case of the property insurance provided by the Wisconsin

local government property fund (Section 2), for the single coverage on buildings and contents, on

average about 70% of policyholders have zero claim per year, and the coefficients of skewness and

kurtosis of the (conditional) claim amount are 21.18 and 570.63, respectively.

1.1 Credibility Theory and Longitudinal Data

Insurers use credibility ratemaking to perform prospective experience rating (adjust future premium

based on past experience) on a risk or a group of risks. Credibility theory has a long history in

actuarial science, with fundamental contributions dating back to the 1900s (Mowbray (1914) and

Whitney (1918)). The intuitive concept of credibility premium is to express the expected future

claim of a given risk class as a weighted sum of the average claim from the risk class and the

average claim over all other risk classes, which begs the question that how much of the experience

of a given policyholder is due to the random variation in the underlying risk and how much is

due to the policyholder being better or worse than average. The classic work of Bühlmann (1967)

provided a systematic solution using what is known as random-effects framework, thereby modern

theory of credibility has developed and flourished. Frees et al. (1999) established the link between

the credibility theory in actuarial science and the longitudinal data models in statistics, and noted

that the credibility predictor is a special form of the shrinkage estimator in the longitudinal data

framework.
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The longitudinal data interpretation of credibility theory suggests additional models and tech-

niques that actuaries can use in experience rating. In the current literature, there are two popular

modeling frameworks for analyzing longitudinal, and in general, clustered data. One approach is

mixed models where a mean model is specified conditional on cluster-specific random effects (Dig-

gle et al. (2002)). The other approach is marginal models using generalized estimating equations

(Liang and Zeger (1986)). The former is more relevant to the prediction application in our context.

Due to the zero inflation and long tails exhibited in the insurance claims, standard longitudinal

data models are not ready to apply to insurers’ experience rating. One attractive approach to

characterizing the complex structure of semicontinuous longitudinal data is the two-part mixed

models with correlated random effects (see, for example, Olsen and Schafer (2001)). The two-

part model, decomposing the semicontinuous outcome into a zero component and a continuous

component, has long found its use in modeling insurance claims (Frees (2014)). An alternative

available strategy is based on a mixed distribution with mass probability at zero that is constructed

from some structured process. One example that is often used in insurance claims modeling is the

Tweedie compound Poisson model (Jørgensen and de Souza (1994) and Smyth and Jørgensen

(2002)). Inference for the Tweedie distribution and Tweedie mixed model was investigated by

Dunn and Smyth (2005; 2008) and Zhang (2013), respectively.

However, both approaches are subject to several difficulties in the current application of pre-

dictive modeling. First, likelihood-based estimation is computationally expensive, especially with

big data such as in insurance. Second, prediction of random effects in nonlinear models is never

an easy task, which further hinders the derivation of the predictive distribution. Third, the struc-

tural assumption of the subject-specific heterogeneity implies a symmetric relation among repeated

observations, and thus limits the way past experience is incorporated into the prediction.

1.2 Copula Regression for Repeated Measurements

Reminiscent of the marginal models for longitudinal data, recent literature has observed rapid

growth of copula regression models for repeated measurements (see Joe (2014) for the recent ad-

vancement on copulas). Marginal models specify the mean model and covariance separately. In

the covariance model, dependence is formulated using working correlation matrix and is treated as

nuisance parameter. Therefore, marginal models are suitable when the mean model is of central

interest and are not appropriate for prediction. In contrast, in copula regression, univariate margins

are specified by (semi-)parametric regressions, while the cluster or serial dependence is modeled

through a multivariate copula. Masarotto et al. (2012) provided a comprehensive methodological

review on marginal regression models using Gaussian copulas.

The first effort of using copula regression for experience rating in insurance is due to Frees

and Wang (2005), where a t-copula was proposed to accommodate the serial correlation in the

severity of automobile claims from a cross section of risk classes. However, predictive applications

of copula model for semicontinuous longitudinal insurance claims are rarely found in the literature.

Two examples are Frees and Wang (2006) and Shi et al. (2016). The former adopted the two-part
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approach by decoupling the claims cost into a frequency and a (conditional) severity component,

and specified elliptical copulas for each longitudinal component. The latter considered the Tweedie

model for the marginal and employed the Gaussian copula to analyze the semi-continuous claims

in a multilevel context.

In this article, we introduce a mixed vine pair copula construction framework for modeling semi-

continuous longitudinal claims. In the proposed framework, a two-component mixture regression is

employed to accommodate the zero inflation and thick tails in the claim distribution. The temporal

dependence among repeated observations is modeled using a sequence of bivariate conditional cop-

ulas based on a mixed D-vine. The proposed approach enjoys several advantages compared with

the methods available in the existing literature. First, the mixture regression combines the merits

of both the two-part and the Tweedie models. Unlike the Tweedie, it allows the analyst to use

different sets of predictors for the frequency and severity of claims. In the meanwhile, it does not

require separate copulas for the frequency and severity components, and thus avoids the unbalanced

data issue in the conditional severity model. It is worth stressing that modeling marginal is of no

less importance than modeling dependence. Inference of dependence will be biased if marginals

are not correctly specified. In the data analysis, we carefully examine the marginal distribution of

claims prior to the specification of the dependence among them. Second, compared with the ellip-

tical copulas in the current literature of experience rating, the mixed vine pair copula construction

allows for more flexible dependence structure by using asymmetric bivariate copulas as building

blocks. In addition, the computational burden is much lower than the case of elliptical copulas

when there are discrete components in the response variable. This feature has significant practical

value where the true data generating process is unknown. Third, for the purposes of experience

rating, we are interested in one particular type of statistical inference - prediction. Under the pair

copula framework, it is straightforward to derive the predictive distribution of future claim given

past experience without referring to the Bayesian approach. We also point out that many existing

credibility predictors can be viewed in the proposed approach.

The main contribution of this article to the literature is the introduction of the vine pair copula

constructions for mixed data and the novel application in insurance experience rating. Vine copulas

have been studied for both continuous and discrete data. Following the seminal work of Bedford

and Cooke (2001, 2002) on this new class of graphical models, Kurowicka and Cooke (2006) and

Aas et al. (2009) are among the first to exploit the idea of building a multivariate model through a

series of bivariate copulas for continuous data. Smith et al. (2010) employed a Bayesian approach

and investigated copula selection in the D-vine for longitudinal data. More recently, Panagiotelis

et al. (2012) introduced the discrete analogue to the vine pair copula construction. Stöber (2013)

and Stöber et al. (2015) studied the theory and applications of pair copula constructions for mixed

data. Our work fills the blank in the literature on vine copulas for a special type of mixed outcome

- hybrid data. Specifically, in Stöber’s work, “mixed data” corresponds to the case where a copula

is used to join a continuous distribution and a discrete distribution. In contrast, we use “mixed

data” to refer to the case of a hybrid distribution, i.e. a random variable with both discrete and
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continuous components, and a copula is used to join two mixed or hybrid distributions. Note that

we motivate the mixed D-vine structure using the predictive nature of the application in insurance

experience rating. However, the notion of mixed vine pair copula construction easily extends to

regular vines.

The rest of the article are organized as follows: Section 2 describes the local government property

insurance fund in the state of Wisconsin and the characteristics of the claim data for the property

coverage on buildings and contents. Section 3 introduces the mixed vine pair copula construction

for semicontinuous clustered data, and discusses model inference. Section 4 provides results on

the application in experience rating in the property insurance in Wisconsin. Technical details are

summarized in Appendix, along with a simulation study where we investigate the estimation and

copula selection for the mixed D-vine model.

2 Wisconsin Local Government Property Insurance Fund

2.1 Background

The Local Government Property Insurance Fund (LGPIF) was established by the Chapter 605 of the

Wisconsin Statutes and is administered by the Wisconsin Office of the Commissioner of Insurance.

The purpose of the LGPIF is to make property insurance available for local government units, such

as counties, cities, towns, villages, school districts, and library boards, etc. The LGPIF is designed

to moderate the budget effects of uncertain insurable events for local government entities with

separate budgetary responsibilities and does not provide coverage for state government buildings.

The LGPIF offers three major types of coverage for local government properties: building and

contents, inland marine (construction equipment), and motor vehicles. It covers all causes of prop-

erty losses with certain exclusions. Such exclusions include those resulting from flood, earthquake,

wear and tear, extremes in temperature, mold, war, nuclear reactions, and embezzlement or theft

by an employee.

The fund operates, to some extent, as a stand-alone property insurer in that it charges premi-

ums and pays claims to its policyholders, i.e. local government units. In terms of size, the fund

is currently insuring over a thousand entities. On average, it writes approximately $25 million in

premiums and $75 billion in coverage each year. However, the fund differs from proprietary insur-

ance companies in its operations. First, the fund has only one state employee who supervises the

day-to-day operations by contracting for specialized services, such as claim management and policy

administration. Second, the LGPIF is not allowed to deny coverage, although local government

units can secure insurance in the open market.

2.2 Data Characteristics

In experience rating, we examine the insurance coverage for building and contents. Data are

collected for 1,019 local government entities over six years from 2006 to 2011. Due to the role of

“residual market” of the LGPIF, attrition is a rare event at least during our sampling period. For
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the same reason, the policyholders’ experience becomes particularly important for pricing insurance

contracts because other sources of market data may not be relevant. We use data in years 2006-2010

to develop the model and reserve the data of 2011 for validation.

The quantity of interest is the entity-level cost of claims that serves as the basis for determining

the pure premium. Similar to private commercial insurers, the government insurance fund keeps

track of claims for its pool of policyholders, from which we derive the total claim cost of each entity

for each year. In addition, the fund further breaks down the total cost of claims by the cause of

losses, known as peril in property insurance. In this application, we examine the total cost as well

as the cost by peril. Statistically speaking, one might prefer to analyze claims by peril presuming

that more information is revealed at granular level observations. On the other hand, one might

argue for the simplicity of aggregating data across perils in the sense of sufficient statistics. In

practice, the choice often depends on the preference of the analyst and the type of data collected

by the insurer. We view this as an empirical question and compare the predictive performance of

both common practices.

Table 1 summarizes the distribution of claim cost by year. The first panel corresponds to

the total claims and the other three correspond to losses caused by water, fire, and other perils,

respectively. Water and fire (including smoke) damages are among those of highest frequency of

occurrence. Examples of other perils include lightning strikes, windstorms and hail, explosion.

All four outcomes are semicontinuous in that a significant portion of zeros is associated with an

otherwise positive continuous outcome. The zeros imply no claims and the positive component

indicates the size of claims. In the table, we report the probability of zero claim denoted by p0.

For instance, regardless of the cause of loss, about 72.3% entities did not report any claim during

year 2006. As expected, the percentage of zeros is larger when decomposing claims by peril, and

water and fire damages are more common than other perils.

Table 1: Distribution of the claim cost by year and by peril

Total Water
Year p0 Mean SD Year p0 Mean SD
2006 0.723 71,338 499,690 2006 0.847 67,082 536,722
2007 0.677 51,225 178,513 2007 0.821 13,791 27,256
2008 0.716 40,439 146,224 2008 0.850 15,260 41,462
2009 0.722 36,932 143,783 2009 0.851 20,995 52,598
2010 0.626 94,784 728,353 2010 0.821 119,892 986,053

Fire Other
Year p0 Mean SD Year p0 Mean SD
2006 0.855 19,893 58,387 2006 0.920 81,808 515,961
2007 0.863 43,441 139,471 2007 0.863 59,010 201,994
2008 0.873 40,087 167,739 2008 0.887 36,357 118,778
2009 0.879 32,975 87,335 2009 0.912 35,606 167,402
2010 0.840 33,384 111,541 2010 0.816 47,330 243,250

Conditioning on at least one claims, we also present in Table 1 the mean and standard deviation
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of the amount of claims. The large standard deviation is as anticipated and is indicative of the

skewness and thick tails in the claim size distribution. Another noticeable feature in severity is

the substantial variation across years, especially for water damages. This is in contrast with claim

frequency where temporal variation is less pronounced. We attribute the temporal variation in the

claim size to the heavy tails of the underlying distribution and we accommodate such data feature

by using a flexible parametric regression. To visualize the size distribution, Figure 1 displays the

violin plot of the amount of claims by year and by peril. One can think of violin plot as a marriage

of box plot and density trace (see Hintze and Nelson (1998) for more details). The plots suggest

that the occurrence of extremely large losses is not unusual and the claims related to water damages

are more volatile than fire and other perils. Overall, zero inflation and heavy tails in the claim cost

distribution, as shown in Table 1 and Figure 1, motivate the two-component mixture regression in

Section 3.1.
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Figure 1: Violin plots of the amount of claims by year and by peril.

In a risk classification system, an insurer uses observed policyholder and contract characteris-

tics to explain the variability in the insurance claims and then reflects such heterogeneity in the

ratemaking. For example, the large claim amount could, to certain extent, relate to the size of the

coverage. Table 2 presents the rating variables, their descriptions, and the associated descriptive

statistics. Unlike personal lines of business (such as automobile and homeowner insurance), we

have a very limited number of predictors used in the rating system, which is not unusual in com-

mercial insurance ratemaking. One rating variable is the entity type that indicates whether the

covered buildings belong to a city, county, school, town, village, or a miscellaneous entity such as

fire stations. Apparently the entity type does not change over the years. For example, about 15%

policyholders are city entities and 30% are school districts. We set miscellaneous entity (TypeMisc)

as reference level in the analysis. As an incentive to prevent and mitigate loss, the fund offers cred-

its for the different types of fire alarms. In our case, the policyholder receives a 5% discount in

premium if automatic smoke alarms are installed in some of the main rooms within a building, a

7



10% discount if alarms are installed in all of the main rooms, and a 15% discount if the alarms are

24/7 monitored. No alarm credit (AC00) is omitted as reference level in the regression analysis.

The alarm credit is often subject to the underwriter’s discretion. The increasing temporal pattern

in the alarm credit might be due to the fact that policyholders are responsive to the incentives

and the advanced alarm system becomes accessible at a lower cost. Because of the skewness in the

amount of coverage (in million dollars), we report its mean and standard deviation (in parenthe-

sis) of the coverage amount in the log scale. The statistics indicate a relatively small variation in

coverage overtime.

Table 2: Description and summary statistics of covariates †
Variable Description Year =

2006 2007 2008 2009 2010

TypeCity =1 if entity type is city 0.146
TypeCounty =1 if entity type is county 0.061
TypeSchool =1 if entity type is school 0.291
TypeTown =1 if entity type is town 0.164
TypeVillage =1 if entity type is village 0.231
AC05 =1 indicate 5% alarm credit 0.025 0.026 0.034 0.054 0.074
AC10 =1 indicate 10% alarm credit 0.045 0.051 0.050 0.067 0.084
AC15 =1 indicate 15% alarm credit 0.381 0.399 0.434 0.486 0.544
Coverage Amount of coverage in log scale 2.065 2.153 2.227 2.285 2.292

(2.021) (2.000) (1.981) (1.990) (1.987)

† Standard deviation for continuous covariates is reported in parenthesis.

Through repeated contracting, an insurer expects to gain private information regarding the risk

level of its policyholders, and thus competitive advantages over its rivals. In particular, insurers

hope to leverage the policyholders’ past claim experience into the prediction of future claims. To

this end, we explore the serial association of the claim cost over time. To motivate the specification

of the mixed D-vine in Section 3.2, we report in Table 3 the partial rank correlations for the total

claim cost as well as the claim cost for each peril. Specifically, the partial correlations are calculated

recursively using relation:

ρjk;l∪V =
ρjk;V − ρjl;V ρkl;V√
(1− ρ2jl;V )(1− ρ2kl;V )

,

where j, k, l are distinct, V is a subset of {1, ...,m}\{j, k, l}, and ρjk;V denotes the partial correlation

between the jth and kth variables controlling for variables with indexes in V . The starting values

in the recursive calculation are sample pairwise correlations.

In each correlation matrix, the upper triangle exhibits the Kendall’s tau and the lower triangle

the Spearman’s rho. Using the upper triangle of the total claim cost as an example, the Kendall’s

tau between the claim cost in 2006 and 2007 is 0.284, between 2006 and 2008 conditioning on 2007

claims is 0.202, between 2006 and 2009 conditioning on 2007 and 2008 claims is 0.188, and so on.

Two general patterns are noted from the table: First, the correlation decreases as one moves from

the primary diagonal of the matrix toward its opposite corner in either upper or lower triangles,
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indicating that the conditioning set is more informative as two observations become further apart in

time; Second, the correlations along the same diagonal are of comparable size with some exceptions

for the claims of other perils. These data characteristics support the D-vine specification with the

stationarity assumption employed in the application in Section 4.

Table 3: Serial partial correlation for the total claim cost and the claim cost by peril

Total Water
2006 2007 2008 2009 2010 2006 2007 2008 2009 2010

2006 1 0.284 0.202 0.188 0.133 2006 1 0.243 0.188 0.157 0.086
2007 0.327 1 0.345 0.204 0.126 2007 0.261 1 0.313 0.194 0.164
2008 0.216 0.395 1 0.298 0.285 2008 0.195 0.339 1 0.284 0.211
2009 0.202 0.222 0.338 1 0.301 2009 0.163 0.205 0.303 1 0.245
2010 0.145 0.133 0.323 0.350 1 2010 0.087 0.172 0.226 0.264 1

Fire Other
2006 2007 2008 2009 2010 2006 2007 2008 2009 2010

2006 1 0.231 0.221 0.188 0.169 2006 1 0.206 0.227 0.172 0.152
2007 0.247 1 0.288 0.208 0.132 2007 0.216 1 0.186 0.152 0.049
2008 0.234 0.306 1 0.188 0.266 2008 0.236 0.197 1 0.192 0.160
2009 0.198 0.219 0.200 1 0.239 2009 0.177 0.158 0.201 1 0.200
2010 0.178 0.137 0.283 0.255 1 2010 0.160 0.051 0.170 0.222 1

3 Modeling Semicontinuous Longitudinal Data

3.1 Marginal Model

Let Yit denote the cost (total or by peril) of claims for policyholder i (= 1, · · · , n) in year t

(= 1, · · · , T ). We consider a two-component mixture model to accommodate the mass probability

at zero, the skewness, and the long tails of the distribution. Specifically, Yit is assumed as being

generated from a degenerate distribution at zero with probability pit and being generated from a

skewed and heavy tailed distribution Git(·) defined on (0,+∞) with probability 1− pit. Assuming

independence between the degenerate distribution and the skewed heavy-tailed distribution, the

resulting variable follows a mixed distribution. Let Fit(·) and fit(·) denote its distribution function

and density function, respectively. It is shown:

Fit(y) = pit + (1− pit)Git(y),

fit(y) = pitI(y = 0) + (1− pit)git(y). (1)

Here I(·) is the indicator function and git is the density function associated with Git.

In the above formulation, the zero component models the probability of incurring claims, and

the continuous component models the amount of claims given occurrence. Separating the frequency

and severity allows for different sets of predictors as well as different effects of the same predictor on

each component. This is a common practice in pricing non-life insurance contracts. Using property
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insurance as an example, one can think that the probability of having claims is more related to the

risk profile of the property, while the amount of payment is, to a great extent, determined at the

adjuster’s discretion.

For the claim frequency, we consider a logit specification due to the straightforward inter-

pretability of model parameters:

log

(
pit

1− pit

)
= x′

1itβ1

where x1it represents the vector of explanatory variables and β1 denotes the corresponding regres-

sion coefficients to be estimated. For the claim severity, we employ the generalized beta of the

second kind (GB2) distribution. See Shi (2014) for discussions of alternative strategies for handling

skewness and heavy tails in insurance claims. The GB2 distribution was introduced by McDonald

(1984) and has found extensive applications in the economics literature (McDonald and Xu (1995)).

More recently, Frees and Valdez (2008) and Shi and Zhang (2015) considered an alternative pa-

rameterization and demonstrated its flexibility in fitting insurance claims. Following this line of

studies, we consider the formulation:

git(y) =
exp(κ1ωit)

y|σ|B(κ1, κ2)[1 + exp(ωit)]κ1+κ2
(2)

where ωit = (ln y−µit)/σ and B(κ1, κ2) is the Euler beta function. The GB2 is a member of the log

location-scale family with location parameter µit, scale parameter σ, and shape parameters κ1 and

κ2. With four parameters, the GB2 distribution is very flexible to model skewed and heavy-tailed

data. For instance, κ1 > κ2 indicates right skewness and κ1 < κ2 left skewness. The rth moment

is E(Y r) = exp(µitr)B(κ1 + rσ, κ2 − rσ)/B(κ1, κ2) where −κ2 < rσ < κ2. The location parameter

is further modeled as a linear combination of covariates to control for the observed heterogeneity

µit = x′
2itβ2, with x2it and β2 being the vector of predictors and regression coefficients, respectively.

3.2 Dependence Model

3.2.1 General Framework

Consider a vector of random variables Z = (Z1, · · · , Zm)′ with each component following a mixed

distribution. In this application, we focus on the zero inflated data that mimic the claim cost in

non-life insurance. The idea is easily extended to the general mixed case. Let z = (z1, · · · , zm)′

denote a realization of Z. Below we lay out a general framework to construct a high dimensional

mixed distribution f(z1, · · · , zm) by using bivariate pair copulas as building blocks.

Let Vm denote a vine on m elements. A regular vine consists of m−1 trees Tl, l = 1, · · · ,m−1,

and Tl is connected by nodes Nl and edges El. Edges in a tree become nodes in the next tree, i.e.

Nl = El−1 (l = 2, · · · ,m − 1). If two nodes in tree Tl are joined by an edge, the corresponding

edges in tree Tl−1 share a node. Define edge set of Vm as E(Vm) = E1 ∪ · · · ∪ Em−1. To develop the

mixed vine, we adopt similar notations used in Panagiotelis et al. (2012). Let Z be a scale element

of Z and V be a subset of Z satisfying Z /∈ V . Let Vh be any scalar element of V and V\h its
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complement. Specify the conditional bivariate mixed distributions using copula:

fZ,Vh|V\h(z, vh|v\h)

=



CZ,Vh;V\h

(
FZ|V\h(0|v\h), FVh|V\h(0|v\h)

)
z = 0, vh = 0

fZ|V\h(z|v\h)c1,Z,Vh;V\h

(
FZ|V\h(z|v\h), FVh|V\h(0|v\h)

)
z > 0, vh = 0

fVh|V\h(vh|v\h)c2,Z,Vh;V\h

(
FZ|V\h(0|v\h), FVh|V\h(vh|v\h)

)
z = 0, vh > 0

fZ|V\h(z|v\h)fVh|V\h(vh|v\h)cZ,Vh;V\h

(
FZ|V\h(z|v\h), FVh|V\h(vh|v\h)

)
z > 0, vh > 0

(3)

where CZ,Vh;V\h(u1, u2) and cZ,Vh;V\h(u1, u2) are the bivariate copula and density function asso-

ciated with conditional distributions FZ|V\h and FVh|V\h , respectively. And ck,Z,Vh;V\h(u1, u2) =

∂CZ,Vh;V\h(u1, u2)/∂uk, for k = 1, 2. For inference, we require the simplifying assumption that

the copula does not directly rely on the conditioning set (see, for example, Haff et al. (2010) and

Stoeber et al. (2013)).

To evaluate (3), we further derive the following generic conditional quantities:

fZ|V (z|v) = fZ|Vh,V\h(z|vh,v\h)

=



CZ,Vh;V\h

(
FZ|V\h(0|v\h), FVh|V\h(0|v\h)

)
FVh|V\h(0|v\h)

z = 0, vh = 0

fZ|V\h(z|v\h)c1,Z,Vh;V\h

(
FZ|V\h(z|v\h), FVh|V\h(0|v\h)

)
FVh|V\h(0|v\h)

z > 0, vh = 0

c2,Z,Vh;V\h

(
FZ|V\h(0|v\h), FVh|V\h(vh|v\h)

)
z = 0, vh > 0

fZ|V\h(z|v\h)cZ,Vh;V\h

(
FZ|V\h(z|v\h), FVh|V\h(vh|v\h)

)
z > 0, vh > 0

(4)

and

FZ|V (z|v) = FZ|Vh,V\h(z|vh,v\h)

=



CZ,Vh;V\h

(
FZ|V\h(0|v\h), FVh|V\h(0|v\h)

)
FVh|V\h(0|v\h)

z = 0, vh = 0

CZ,Vh;V\h

(
FZ|V\h(z|v\h), FVh|V\h(0|v\h)

)
FVh|V\h(0|v\h)

z > 0, vh = 0

c2,Z,Vh;V\h

(
FZ|V\h(0|v\h), FVh|V\h(vh|v\h)

)
z = 0, vh > 0

c2,Z,Vh;V\h

(
FZ|V\h(z|v\h), FVh|V\h(vh|v\h)

)
z > 0, vh > 0

=


CZ,Vh;V\h

(
FZ|V\h(z|v\h), FVh|V\h(0|v\h)

)
FVh|V\h(0|v\h)

vh = 0

c2,Z,Vh;V\h

(
FZ|V\h(z|v\h), FVh|V\h(vh|v\h)

)
vh > 0

(5)
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Define

f̃Z,Vh|V\h(z, vh|v\h) :=
fZ,Vh|V\h(z, vh|v\h)

fZ|V\h(z|v\h)fVh|V\h(vh|v\h)
, (6)

one can express the joint distribution of Z using the bivariate building blocks as:

fZ(z1, · · · , zm) =

m∏
j=1

fZj (zj)
∏

[Z,Vh|V\h]∈E(Vm)

f̃Z,Vh|V\h(z, vh|v\h). (7)

Definition (6) is the ratio of the bivariate distribution to the product of marginals given the con-

ditioning set. Thus, one can interpret (6) as the (conditional) “dependence ratio” with a ratio

of one indicating conditional independence. Each ratio corresponds to one building block in the

pair copula construction. Equation (7) shows that the joint distribution can be expressed as the

product of marginals and the bivariate building blocks. Detailed discussion is provided in Appendix

A.3. Formulation (7) provides a general framework for the pair copula construction in that both

continuous and discrete vines can be viewed in the same framework as well. We articulate this

point in more detail using the example of D-vine in Section 3.2.2.

3.2.2 Mixed D-Vine

For this application, we focus on a specific vine - D-vine. We use the term “mixed D-Vine” to refer

to a D-Vine with a distribution that is a combination of a discrete and continuous components.

Due to its simplicity, the D-vine is one of the most popular vine structures used in applied studies.

An example of a D-vine on five elements is exhibited in Figure 2. The key feature of the D-vine is

that the nodes of each tree only connect adjacent nodes. For instance, the nodes in the first tree

represent ordered marginals, and the edges in each tree becomes the nodes in the next tree. Each

edge corresponds to a (conditional) bivariate distribution that we construct using a parametric

copula. The edges of the entire vine indicate the bivariate building blocks that contribute to the

pair copula constructions.

In longitudinal data, a cross-sectional subjects are repeatedly observed over time. The tem-

poral order makes D-vine a natural choice. Consider a mixed variables for T periods. The joint

distribution of (Z1, · · · , ZT ) can be expressed based on a D-vine as:

fZ(z1, · · · , zT ) = f(zT |zT−1, · · · , z1)× · · · × f(z2|z1)f(z1)

=

T∏
t=1

ft(zt)

T∏
t=2

t−1∏
s=1

f̃s,t|(s+1):(t−1)(zs, zt|zs+1, · · · , zt−1). (8)
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Figure 2: A 5-dimension D-vine

where using (6), we show:

f̃s,t|(s+1):(t−1)(zs, zt|zs+1, · · · , zt−1)

=



Cs,t;(s+1):(t−1)

(
Fs|(s+1):(t−1)(0|zs+1, · · · , zt−1), Ft|(s+1):(t−1)(0|zs+1, · · · , zt−1)

)
Fs|(s+1):(t−1)(0|zs+1, · · · , zt−1)Ft|(s+1):(t−1)(0|zs+1, · · · , zt−1)

zs = 0, zt = 0

c1,s,t;(s+1):(t−1)

(
Fs|(s+1):(t−1)(zs|zs+1, · · · , zt−1), Ft|(s+1):(t−1)(0|zs+1, · · · , zt−1)

)
Ft|(s+1):(t−1)(0|zs+1, · · · , zt−1)

zs > 0, zt = 0

c2,s,t;(s+1):(t−1)

(
Fs|(s+1):(t−1)(0|zs+1, · · · , zt−1), Ft|(s+1):(t−1)(zt|zs+1, · · · , zt−1)

)
Fs|(s+1):(t−1)(0|zs+1, · · · , zt−1)

zs = 0, zt > 0

cs,t;(s+1):(t−1)

(
Fs|(s+1):(t−1)(zs|zs+1, · · · , zt−1), Ft|(s+1):(t−1)(zt|zs+1, · · · , zt−1)

)
zs > 0, zt > 0

(9)

There are two points worth stressing. First, the decomposition in (8) is not unique. The

order of these random variables determines pair copula building blocks and each decomposition

corresponds to a graphical model with a specific vine structure. For a T dimensional vector, there

are T !
2 × 2(

T−2
2 ) possible vine trees, which points to a vine selection problem (see, for example

Dißmann et al. (2013), Gruber et al. (2015), Panagiotelis et al. (2015)). We choose the D-vine due

to the longitudinal nature of the application. Hence vine selection is not concern for this study.

However, the other aspect of model selection - copula selection - is of more importance and we will

discuss this issue in Section 3.3. Second, both continuous and discrete pair copula constructions

can be viewed in this general framework. To be more specific, we recognize the following two cases

that can be derived using (6):

13



(1) Continuous vine (Aas et al. (2009))

f̃s,t|(s+1):(t−1)(zs, zt|zs+1, · · · , zt−1)

=cs,t;(s+1):(t−1)

(
Fs|(s+1):(t−1)(zs|zs+1, · · · , zt−1), Ft|(s+1):(t−1)(zt|zs+1, · · · , zt−1)

)
(2) Discrete vine (Panagiotelis et al. (2012))

f̃s,t|(s+1):(t−1)(zs, zt|zs+1, · · · , zt−1)

=

∑
i1=0,1

∑
i2=0,1

(−1)i1+i2Cs,t;(s+1):(t−1)

(
Fs|(s+1):(t−1)(zs − i1|zs+1, · · · , zt−1), Ft|(s+1):(t−1)(zt − i2|zs+1, · · · , zt−1)

)
fs|(s+1):(t−1)(zs|zs+1, · · · , zt−1)ft|(s+1):(t−1)(zt|zs+1, · · · , zt−1)

3.3 Inference

Due to the parametric nature of the proposed model, we employ likelihood-based method for

estimation. Consider a portfolio of n policyholders, the total log likelihood function is

ll(θ, ζ) =
n∑

i=1

T∑
t=1

log fit(yit) +
n∑

i=1

T∑
t=2

t−1∑
s=1

log f̃i,s,t|(s+1):(t−1)(yis, yit|yi,s+1, · · · , yi,t−1) (10)

where fit(·) and Fit(·) are specified by (1), f̃i,s,t|(s+1):(t−1)(·|·) is specified by (9), and θ and ζ

summarize the parameters in marginals and the mixed D-vine, respectively. Note that the model

allows for unbalanced data provided that there are no intermittent missing values. The model can

be estimated by two methods: joint maximum likelihood estimation (MLE) and inference function

for margins (IFM) (see Joe (2005)). The joint MLE is a full likelihood approach and estimates all

model parameters simultaneously. In a two-stage IFM, one estimates the marginal parameters (θ)

from a separate univariate likelihood and then estimates the dependence parameters (ζ) from the

multivariate likelihood with the marginal parameters given from the first stage. Compared with

the joint MLE, the IFM is more computationally efficient by sacrificing the statistical efficiency.

Therefore, the IFM is more practical for predictive applications where the statistical efficiency is

of secondary concern. We examine both methods in Section A.4.

To implement the likelihood (10), one needs to evaluate the marginal densities and the bivariate

building blocks (9) corresponding to each edge in the D-vine. We first calculate the marginal

densities according to (1). Then we calculate (9) on a tree-by-tree basis from lower to higher

orders. In the calculation of (9) for each tree, we use the copula of the current tree and the

conditional cdf derived from the previous tree. An algorithm for evaluating the likelihood function

for the mixed D-vine is provided in Appendix A.1.

In addition, we explore a sequential method that estimates and selects the bivariate copulas

on a tree-by-tree basis. We start with the first tree, estimating the parameters and selecting the

appropriate copulas from a given set of candidates. Fixing the parameters in the first tree, we then

estimate the dependence parameters in the second tree for the candidate copulas and select the

14



optimal. We continue estimating parameters and selecting copulas for the next tree of a higher

order while holding the parameters fixed in all previous trees. If an independence copula is selected

for a certain tree, we then truncate the vine, i.e. assume conditional independence in all higher

order trees (see, for example, Brechmann et al. (2012)). We use a heuristic procedure based on a

commonly used model selection method Akaike information criterion (AIC) to select the copula.

The sequential approach reduces the number of models to compare extensively and thus helps

to fast select an appropriate model for applied studies. The benefit could be substantial in the

case of big data or high dimensional dependence. In this application with a short panel of five-year

observations, under the stationary assumption with nine candidate copulas, the sequential approach

compares 9× 4 different models in contrast to 94 models in an exhaustive search. The performance

of the sequential method is investigated using simulation studies.

4 Application in Experience Rating

4.1 Model Fitting

We apply the proposed approach to the LGPIF claim data for the property coverage of building

and contents. Separate models are fit for the total claim cost as well as the claim cost by peril.

To summarize, the two-component mixture regression is used to accommodate the semicontinuous

claim cost. The mass probability at zero is modeled using a logit regression and the amount of

claims is modeled using a GB2 regression. Due to the limited number of predictors, we did not

perform variable selection but instead included all available covariates in the two components. In

the preliminary analysis, we explored the potential nonlinear effect of the coverage amount using

scatter plot smoothing techniques (see, for instance, Ruppert et al. (2003)) and we found the linear

term of coverage in log scale quite satisfactory. The estimation results are summarized in Table

4. Parameters are estimated by the IFM and standard errors are calculated using the Godambe

information matrix.
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The results suggest that the entity type explains some heterogeneity in both claim frequency

and severity. The effect of the alarm credit is a little counterintuitive which is to some extent

explained by the estimation uncertainty. This counterintuitive effect could also imply some moral

hazard issue. As anticipated, the odds of claim occurrence is higher for larger contract (due to

higher exposure to risk), and so is the expected aggregate amount of claims. In the severity model,

ϕ1 > ϕ2 in all the fitted GB2 distribution implies the positive skewness in the amount of claims.

As indicated by the relation between ϕ1 ϕ2 and σ, their (theoretical) second moments do not even

exist, which is consistent with the long tails in the distributions shown in Figure 1.

To demonstrate the goodness-of-fit of the GB2 distribution, we present in Figure 3 the qq-plots

of the Cox-Snell residuals that is defined as rit = Φ−1(Git(yit)). The match between the theoretical

and empirical quantiles suggests the favorable fit of the GB2 distribution. The plots also indicate

a slight lack of fit in the left tails except for the claims related to fire damages. However, for the

purposes of ratemaking, we are more interested in the large claims that correspond to the right tails

of the distribution. The left tails represent small claims and are less of a concern in this application.
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Figure 3: QQ plots of the GB2 distribution for total claims and claims by peril.
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Pair copula constructions based on a mixed D-vine are used to accommodate the serial depen-

dence among the longitudinal semicontinuous claim costs. We consider a candidate set of nine

bivariate copulas as building block, including the Gaussian, Student’s t, Gumbel, Clayton, Frank,

Joe, survival Gumbel, survival Clayton, and survival Joe copulas. For the purpose of prediction, we

further impose a stationarity assumption that all conditional pairs in a given tree share the same

dependence. One should not view this assumption as a limitation of the proposed approach. In

traditional longitudinal models, one would need a structured serial correlation such as autoregres-

sive or exchangeable so as to borrow strength from past experience for future prediction. In the

same spirit, the stationarity assumption is only required for prediction but not necessary for other

types of statistical inference for the proposed longitudinal model.

Table 5 summarizes the selected bivariate copulas for the mixed D-vine, the estimated asso-

ciation parameters, and the corresponding Kendall’s taus for the total claim cost as well as the

claim cost by peril. We followed the procedure in Section 3.3 to select the copula and to decide

the optimal truncation. With five years of data, we have at most four trees in each of the mixed

D-vines. For example, the mixed D-vine for the losses due to other perils is truncated at the third

tree. The model is calibrated using the IFM. In general, the Kendall’s tau decreases when moving

from lower order trees to higher order trees. The decreasing pattern suggests that the conditioning

set in higher order trees explains more of the association between the two nodes. This is consistent

with the first principal of building vine trees that the (conditional) pairs with stronger association

should receive higher priority. The reported Kendall’s tau represents a partial relation in the same

sense of the partial correlation. However, because of the discrete component in the marginal distri-

butions, the inferred associations from the estimated copulas do not necessarily match the partial

correlations from the data as reported in Table 3 (see Genest and Nešlehová (2007)), although they

present a similar decreasing pattern.

Table 6 compares the goodness-of-fit statistics of the selected D-vine with two special cases,

a fully truncated model and a fully simplified model. The former uses independence copula for

all (conditional) pairs, and the latter uses Gaussian copula for all (conditional) pairs. It is not

surprising that the mixed D-vine is superior to the independence copula, confirming the significant

temporal association in the zero-inflated longitudinal data. When compared with the Gaussian

copula, the favorable fit of the mixed D-vine (smaller AIC and BIC statistics) emphasizes the

value added by the flexible dependence structure (such as asymmetric and non-linear association)

embraced by the pair copula constructions. Such flexibility plays a crucial role in the dependence

modeling for nonnormal outcomes such as heavy-tailed and discrete data.

4.2 Prediction

Experience rating is to incorporate policyholders’ past claim experience into the future premiums.

The mixed D-vine provides a natural structure to derive the predictive distribution, not just a point

prediction, of the future claim cost. We stress that this is another advantage of using pair copula

constructions for predictive applications. With elliptical copulas, it is not straightforward to derive
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Table 5: Selected copulas for the mixed D-vine with estimated dependence

Total Claim Copula Est. Std. Kendall’s tau

T1 Rotated Joe 1.440 0.062 0.199
T2 Rotated Joe 1.382 0.063 0.178
T3 Rotated Joe 1.274 0.066 0.135
T4 Clayton 0.214 0.097 0.097

Water Copula Est. Std. Kendall’s tau

T1 Rotated Joe 1.962 0.143 0.347
T2 Rotated Joe 1.685 0.126 0.276
T3 Rotated Joe 1.535 0.135 0.231
T4 Rotated Joe 1.302 0.166 0.146

Fire Copula Est. Std. Kendall’s tau

T1 Frank 1.376 0.268 0.150
T2 Rotated Joe 1.668 0.132 0.271
T3 Frank 1.229 0.324 0.135
T4 Rotated Joe 1.500 0.194 0.219

Other Copula Est. Std. Kendall’s tau

T1 Rotated Joe 1.622 0.156 0.258
T2 Rotated Joe 1.614 0.159 0.255
T3 Gaussian 0.098 0.054 0.062

Table 6: Goodness-of-fit statistics of the mixed D-vine and its nested models
Total Water Fire Other

AIC BIC AIC BIC AIC BIC AIC BIC

Truncated Model 39,708 39,859 21,191 21,341 18,584 18,735 16,701 16,851
Simplied Model 39,624 39,801 21,098 21,275 18,523 18,700 16,667 16,844
Mixed D-vine 39,561 39,737 21,036 21,213 18,496 18,673 16,658 16,834
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the predictive distribution when there are discrete components in the marginals. For policyholder

i, denoting Yi = (Yi1, · · · , YiT )′, the conditional distribution of Yi,T+1 given Yi is shown as:

fYi,T+1|Yi
(y) = fi,T+1(y)

T∏
t=2

f̃i,t,T+1|(t+1):T (yit, y|yi,t+1, · · · , yi,T ).

Here, fi,T+1(·) and f̃i,t,T+1|(t+1):T (·|·) are defined by (1) and (9), respectively. The derivation of

the predictive distribution relies on the conditional independence assumption between Yi1 and

Yi,T+1 given Yi2, · · · , Yi,T . This is sensible given the pattern of the dependence in the mixed D-vine

reported in Table 5. Detailed derivation of the predictive density is found in Appendix A.3. Insurers

set pure premium as expected cost of the contract, thus the experience adjusted pure premium is

E(Yi,T+1|Yi = yi). The predictive mean can be estimated using the Monte Carlo simulation or the

numerical integration.

The predictive performance is investigated using the hold-out sample of year 2011. It is well

known that the usual loss functions are ill-suited for capturing the differences between the predicted

values and the corresponding outcomes in the hold-out sample, due to the high proportion of zeros

and the skewness and heavy tails in the distribution of the positive losses. Therefore we turn to

alternative statistical measures - the ordered Lorenz curve and the associated Gini index - that

have been developed in the recent literature (see Frees et al. (2012) and Frees et al. (2014)). The

essential idea of the ordered Lorenz curve is to measure the discrepancy between the premium

and loss distributions. Let B(x) be the base premium and P (x) be the competing premium, both

depending on a set of exogenous variables x. The ordered premium and loss distributions are

defined based on the relativity R(x) = P (x)/B(x) as:

ĤP (s) =

∑n
i=1B(xi)I(R(xi) ≤ s)∑n

i=1B(xi)
and L̂P (s) =

∑n
i=1 yiI(R(xi) ≤ s)∑n

i=1 yi
.

The ordered Lorenz curve is the plot of
(
ĤP (s), L̂P (s)

)
. The 45-degree line, known as the line of

equality, indicates the percentage of losses equals the percentage of premiums. The associated Gini

index is defined as twice the area between the ordered Lorenz curve and the line of equality, and it

may range over (−1, 1). A curve below the line of equality suggests that the insurer could look to

the competing premium to identify more profitable contracts.

We make two sets of validations. The first is to compare the proposed experience rated premium

with some alternative bases. Table 7 reports the Gini indices associated with the ordered Lorenz

curves under three scenarios. The upper panel uses a constant premium base, the middle panel

uses the contract premium in year 2011 as the base, and the lower panel uses the non-experience

adjusted premium base. Within each panel, we consider the prediction for the total claim cost as

well as the claim cost by peril. Two methods are used to derive the prediction for the total claim

cost. One directly predicts from the model for the total claim cost, the other predicts the claim cost

for each peril and then aggregates them. The constant premium base means that the insurer does
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not differentiate good risks and bad risks, and charges all policyholders the average cost. Hence it

is not surprising to observe the large and significant Gini indices for all predictions in the upper

panel. With both informative predictors and claim experience, insurers will achieve better risk

segmentation. In practice, insurers use a finer-grained rating algorithm to classify and price the

risk. Fortunately, the LGPIF data contain the actual contract premium for building and contents

coverage as well as the premium for each peril. When compared with the contract premiums, the

Gini indices become smaller as shown in the middle panel. However, the statistical significance

suggests that the insurer can still identify profitable business when looking to the proposed ex-

perience adjusted rates. The lower panel demonstrates the importance of experience rating. The

non-experience adjusted premium is calculated based on the independence assumption among the

repeated observations over time. Indeed, the results are in line with our expectations. The signif-

icant positive Gini indices implies that the claim experience provides the insurer opportunities to

cream skim (or cherry-pick the low-risk policyholders).

Table 7: Gini indices (percentage) with the constant, contract, and independence premium bases

Total Claim Claim by Peril
Base Total By Peril Water Fire Other

Constant 76.16 76.57 69.63 76.58 78.84
(4.65) (4.72) (6.88) (5.31) (6.93)

Contract 31.34 33.69 29.29 16.89 38.92
(8.74) (10.04) (8.99) (19.02) (9.30)

Independence 36.93 34.19 32.14 26.52 29.80
(11.2) (12.14) (12.63) (11.06) (11.78)

Figure 4 displays the ordered Lorenz curves corresponding to Gini indices of the total claim

cost prediction in Table 7. The left panel shows the case of the direct prediction and the right

panel shows the case of the prediction by peril. For instance, the areas between the curves and the

45-degree line in the left panel are 0.38, 0.15, and 0.18 when using the constant premium, contract

premium, and independence premium as bases, respectively.

The second set of validation is to compare the proposed rating algorithm with some off-the-shelf

strategies for experience rating. The standard approach to incorporating past claims into future

prediction is to use a random effect framework. We examine both the linear and generalized linear

models. The former leads to the classic Bülhmann credibility premium. In the latter, we consider

the industry benchmark - the Tweedie’s compound Poisson model. We evaluate the performance

of alternative approaches based on the prediction for the total claim cost for building and contents

coverage. The total claim cost is either predicted directly or indirectly by aggregating the claims

of different perils. Table 8 briefly summarizes the alternative predicting methods.

For model comparison, we calculate the Gini index matrix as in Table 9. The matrix summa-

rizes the pair-wise Gini indices of the predictions from all candidate models when each of them is

successively used as the base premium and the remaining as competing premiums. For example,

the first row corresponds to the Gini indices using the experience-adjusted premium from the model
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Figure 4: Ordered Lorenz curves using constant, contract, and independence premium bases. The
left panel corresponds to the prediction of total claim cost and the right panel corresponds to the
prediction of claim by peril.

Table 8: Description of alternative experience rating models

Model Description

LM.t Linear mixed model directly predicts the total claim cost
GLM.t Tweedie mixed effects model directly predicts the total claim cost
COPULA.t Mixed D-vine approach directly predicts the total claim cost
LM.p Linear mixed model predicts the claim cost by peril
GLM.p Tweedie mixed effects model predicts the claim cost by peril
COPULA.p Mixed D-vine approach predicts the claim cost by peril
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LM.t as the base. The sub matrices in the upper left and lower right corners are of our primary

interest. One strategy for model selection is to use the proposed premium from the mixed D-vine

model to challenge alternative premiums from the off-the-shelf rating algorithms. The upper left

matrix compares models that directly predict the total claim cost. The Gini indices are 32.41 and

50.52 for the Bülhmann premium base and the Tweedie premium base, respectively. The lower

right matrix compares models that predict the claim cost by peril and then aggregate them. The

Gini indices are 29.90 and 56.34 for the Bülhmann premium base and the Tweedie premium base,

respectively. The statistical significance confirms that the proposed mixed D-vine model leads to a

greater separation among the observations.

Alternatively, to pick the “best” model, one could use a “minimax” strategy to select the base

premium model that is the least vulnerable to the competing premium models. That is, we select

the model that provides the smallest of the maximal Gini indices among the challenging premiums.

For the direct prediction, the maximal Gini indices are 32.41, 50.52, and 14.89 when the base

premium corresponds to the linear model, Tweedie model, and copula model, respectively. The

copula approach has the smallest maximal Gini index, and hence is the least vulnerable to the

alternative predictions. In a similar manner, when predicting by peril, the copula approach also

has the smallest maximal Gini index of 15.48. When selecting from all six models, the “minmax”

approach picks the predictions by peril from the mixed D-vine model. As a summary, we attribute

the superior performance of the proposed method in experience rating to: 1) The two-component

mixture model provides substantial flexibility in capturing the unique features in the insurance

claim data, such as zero inflation, skewness, and thick tails; 2) The pair copula constructions based

on the mixed D-vine allow us to accommodate a wide range of dependence including nonlinear and

asymmetric relationship, while the traditional random effects framework limits the way past claims

are incorporated into the future prediction.

Table 9: Gini index matrix for six alternative predictions

LM.t GLM.t COPULA.t LM.p GLM.p COPULA.p

LM.t − 7.50 32.41 1.03 6.80 32.09
(9.61) (11.84) (11.44) (9.61) (11.77)

GLM.t 29.22 − 50.52 33.34 -39.34 51.47
(8.92) (8.45) (10.85) (9.48) (8.78)

COPULA.t -4.45 14.89 − -6.20 15.87 18.22
(11.68) (9.05) (13.76) (8.98) (11.61)

LM.p 27.33 23.77 30.53 − 23.65 29.90
(10.68) (9.18) (12.86) (9.10) (12.48)

GLM.p 35.50 47.02 55.32 40.19 − 56.34
(9.30) (9.24) (8.44) (10.69) (8.66)

COPULA.p -3.99 14.72 -8.05 -5.00 15.48 −
(12.25) (8.95) (12.20) (13.34) (8.64)
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5 Discussion

Motivated by the experience rating practice in non-life insurance, this article introduced pair copula

constructions based on the mixed D-vine for modeling the zero-inflated longitudinal insurance claim

cost. The proposed approach is shown to achieve better risk segmentation and thus improve market

efficiency. The data analysis emphasized the benefits of the mixed vine approach in both fitting the

observations in the training sample and predicting the observations in the hold-out sample. The

size of the insurance market itself justifies the contribution of the new method. Furthermore, pair

copula constructions for mixed outcomes are expected to find applications in many other disciplines.

To name a few, in marketing research, retailers are interested in consumers’ purchasing behavior;

in health care, care providers are interested in the patients’ consumption of medical services; in

climate studies, scientists are interested in the amount of precipitation. The variables of interest

from all these examples are mixed measurements.

A natural extension is to generalize the current mixed D-vine framework for the semi-continuous

longitudinal data to the multivariate context. In this application, the total claim cost for building

and contents coverage is decomposed into claims by water, fire, and other perils. The losses caused

by these perils were treated as three independent longitudinal outcomes separately. However, if the

losses from different perils are correlated, it is arguable that one can further improve prediction

and experience rating scheme by borrowing strength among perils. To provide intuition, we display

in Table 10 the contemporaneous cross-sectional correlation among the claim costs from various

perils. The upper and lower triangles report the Kendall’s tau and Spearman’s rho, respectively,

and the correlations are calculated after controlling for the observed heterogeneity.

Table 10: Rank correlations among claims of different perils

Water Fire Other

Water 1 0.233 0.228
Fire 0.250 1 0.193
Other 0.244 0.205 1

The strong relation suggests some joint modeling strategy. For the prediction purposes, the

association that matters most is the lead-lag correlation across perils rather than contemporaneous

correlation between perils. In experience rating, one hopes that the past claims in other perils could

provide prediction lift for related perils. Although not reported, the strong correlations in Table

10 are indeed associated with significant lead-lag correlations across perils. Recently, Brechmann

and Czado (2015) and Smith (2015) discussed possible strategies of constructing vine trees for

multivariate time series, which shed some lights on the modeling of multivariate longitudinal data.

This topic is being investigated in a separate work.
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Appendix

A.1 Algorithm for Computing Likelihood

For a T -vector of zero-inflated outcomes Z = (Z1, · · · , ZT ), the likelihood of the mixed D-vine

can be calculated using the following algorithm. Note that the algorithm can be extended to the

general type of mixed outcomes. Without loss of generality, we focus on the outcome with a mass

probability at zero.

1. For t = 1, · · · , T , evaluate Ft and ft with marginal model (1).

2. For t = 1, · · · , T − 1, evaluate f̃t,t+1 using (9) with Ft and Ft+1.

3. For t = 1, · · · , T − 2:

(a) Evaluate Ft|t+1 using (5) with Ct,t+1;

(b) Evaluate Ft+2|t+1 using (4) with Ct+1,t+2;

(c) Evaluate f̃t,t+2;t+1 with Ft|t+1 and Ft+2|t+1 using (9).

4. For t = 3, · · · , T − 1 and s = 1, · · · , T − t:

(a) Using previous Cs,s+t−1;s+1,··· ,s+t−2, calculate Fs|s+1,··· ,s+t−1;

(b) Using previous Cs+1,s+t;s+1,··· ,s+t−1, calculate Fs+t|s+1,··· ,s+t−1;

(c) Evaluate f̃s,s+t;s+1,··· ,s+t−1 with Fs|s+1,··· ,s+t−1 and Fs+t|s+1,··· ,s+t−1 using (9).

5. The likelihood is calculated as f1:T =
∏T

t=1 ft
∏T

t=2

∏t−1
s=1 f̃s,t|(s+1):(t−1).

A.2 Algorithm for Simulating from Mixed Vine

To simulate from the mixed D-vine, we define function g such that

FZ|V\h(z|v\h) = g
(
FZ|V (z|v), FVh|V\h(vh|v\h)

)
.

To simplify the notation, let C denote the bivariate copula joining FVh|V\h and FZ|V\h , and c2

denote its partial derivative with respect to the second argument. Then g(a, b) is solution x toC(x, b)/b = a vh = 0

c2(x, b) = a vh > 0

Here are some examples related to the simulation studies in Section 5. For Archimedean copulas,

C(u1, u2) = ψ−1(ψ(u1) + ψ(u2)), where ψ is the generator. We have
C(x, b)/b =

ψ−1(ψ(x) + ψ(b))

b
= a vh = 0

c2(x, b) =
ψ′(b)

ψ′(ψ−1(ψ(x) + ψ(b)))
= a vh > 0
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Solving for x, one obtains

g(a, b) =

ψ−1(ψ(ab)− ψ(b)) vh = 0

ψ−1[ψ((ψ′)−1(ψ′(b)/(a)))− ψ(b)] vh > 0

As another example, for the survival Archimedean copulas C(u1, u2) = u1+u2−1+ψ−1(ψ(1−
u1) + ψ(1− u2)), we have

D2(x, b) = 1− ψ′(1− b)

ψ′(ψ−1(ψ(1− x) + ψ(1− b)))
.

The solution to D2(x, b) = a is of the form

1− ψ−1[ψ((ψ′)−1(ψ′(1− b)/(1− a)))− ψ(1− b)].

In the simulation, we use the survival Joe copula, where ψ(t) = −ln[1 − (1 − t)θ], ψ−1(t) =

1− (1− e−t)1/θ, ψ′(t) = − θ(1−t)θ−1

1−(1−t)θ
. And (ψ′(t))−1 is calculated with numerical root solve.

Below are simulation steps for the model where the marginal is a logit-GB2 mixture regression

defined by (1):

1. For t = 1, · · · , T , calculate zero probabilities Ft(0) using the logit model, and calculate

location parameter µt in the GB2 distribution Gt.

2. Generate u1, · · · , uT following T -dimensional independent Uniform (0, 1).

3. If u1 < F1(0), set y1 = 0 and F1(y1) = F1(0);

Otherwise, set F1(y1) = u1. Then y1 is solution to F1(0)+ (1−F1(0))G1(y1) = u1, which has

closed form solution

y1 =

(
qf

(
F1(y1)− F1(0)

1− F1(0)
, df1 = 2κ1,df2 = 2κ2

))σ

exp(µ1)

(
κ1
κ2

)σ

where qf is quantile of F -distribution with degrees of freedom df1 and df2.

4. (a) Calculate F2|1(0) using copula C12 with F2(0) and F1(y1).

If u2 < F2|1(0), set y2 = 0 and F2(y2) = F2(0).

Otherwise, set F2|1(y2) = u2, and calculate F2(y2) = g(F2|1(y2), F1(y1)). Then

y2 =

(
qf

(
F2(y2)− F2(0)

1− F2(0)
, df1 = 2κ1, df2 = 2κ2

))σ

exp(µ2)

(
κ1
κ2

)σ

.

(b) Calculate F1|2(y1) using C12 with F1(y1) and F2(y2).

5. For t = 3, · · · , T
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(a) Calculate Ft|t−1(0) using Ft(0) and Ft−1(yt−1) with copula Ct−1,t.

(b) For s = 2, · · · t− 1, calculate conditional probability at zero Ft|t−1,··· ,t−s(0) using copula

Ct,t−s|t−1,··· ,t−s+1 with Ft|t−1,··· ,t−s+1(0) and Ft−s|t−1,··· ,t−s+1(yt−s).

(c) If ut < Ft|1,··· ,t−1(0), set yt = 0 and Ft(yt) = Ft(0); Otherwise

i. Ft|1,··· ,t−1(yt) = ut;

ii. If t > 3, for s = 2, · · · t−1, calculate Ft|t−1,··· ,s(yt) = g(Ft|t−1,···s−1(yt), Fs−1|t−1,··· ,s(ys−1))

with copula Ct,s−1|s,··· ,t−1;

iii. Calculate Ft(yt) = g(Ft|t−1(yt), Ft−1(yt−1) with copula Ct−1,t, then

yt =

(
qf

(
Ft(yt)− Ft(0)

1− Ft(0)
, df1 = 2κ1, df2 = 2κ2

))σ

exp(µt)

(
κ1
κ2

)σ

.

(d) If t < T , calculate

i. Ft−1|t(yt−1) using Ft(yt) and Ft−1(yt−1) with copula Ct−1,t;

ii. For s = t−2, · · · , 1, calculate Fs|s+1,··· ,t(ys) with Fs|s+1,··· ,t−1(ys) and Ft|s+1,··· ,t−1(yt)

using copula Cs,t|s+1,··· ,t−1.

A.3 Joint and Predictive Distributions Using D-vine

To derive (7), one can decompose the joint density of Z = (Z1, · · · , Zm) into conditional densities.

The decomposition is not unique depending on the vine structure. Without loss of generality, we

write:

fZ(z1, · · · , zm) = f(zm|z1, · · · , zm−1)f(zm−1|z1, · · · , zm−2) · · · f(z2|z1)f(z1).

From (6), we calculate each conditional density using

fZ|Vh,V\h(z|vh,v\h) = f̃Z,Vh|V\hfZ|V\h(z|v\h). (11)

By choosing conditioning variable Vh according to the regular vine structure recursively, the likeli-

hood can be expressed into (7).

Consider a D-vine for longitudinal data Z = (Z1, · · · , ZT ). Using relation (11) repeatedly, we

show

f(zt|zt−1, · · · , z1) = f̃1,t|2:(t−1)(z1, zt|z2, · · · , zt−1)f(zt|z2, · · · , zt−1)

= f̃1,t|2:(t−1)(z1, zt|z2, · · · , zt−1)f̃2,t|3:(t−1)(z2, zt|z3, · · · , zt−1)f(zt|z3, · · · , zt−1)

...

= f(zt)

t−1∏
s=1

f̃s,t|(s+1):(t−1)(zs, zt|zs+1, · · · , zt−1).
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Therefore,

fZ(z1, · · · , zT ) = f(z1)
T∏
t=2

f(zt|zt−1, · · · , z1)

=

T∏
t=1

ft(zt)

T∏
t=2

t−1∏
s=1

f̃s,t|(s+1):(t−1)(zs, zt|zs+1, · · · , zt−1).

The predictive density of the outcome in period T + 1, ZT+1, given Z is:

fZT+1|Z(zt+1) = fT+1|1:T (zt+1|z1, · · · , zt)

=

∏T+1
t=1 ft(zt)

∏T+1
t=2

∏t−1
s=1 f̃s,t|(s+1):(t−1)(zs, zt|zs+1, · · · , zt−1)∏T

t=1 ft(zt)
∏T

t=2

∏t−1
s=1 f̃s,t|(s+1):(t−1)(zs, zt|zs+1, · · · , zt−1)

= fT+1(zT+1)

T∏
s=1

f̃s,T+1|(s+1):T (zs, zT+1|zs+1, · · · , zT )

= fT+1(zT+1)

T∏
s=2

f̃s,T+1|(s+1):T (zs, zT+1|zs+1, · · · , zT ).

The last equality is based on the assumption that Z1 and ZT+1 are conditionally independent given

(Z2, · · · , ZT ).

A.4 Simulation

This section investigates two issues using simulated data. The first experiment is to compare esti-

mations from the IFM and the joint MLE. The second experiment is to explore the performance of

the sequential copula selection algorithm. In the simulation, we set T = 4, that is, each policyholder

is repeatedly observed for four years. Data are generated from the multivariate model based on the

mixed D-vine with marginals from the two-component mixture regression. Specifically, the joint

distribution of Yi = (Yi1, Yi2, Yi3, Yi4) is specified by (8) and (9) where all the bivariate copulas

Cs,t;(s+1):(t−1) are assumed to be the survival Joe copula. We further assume that the pair copulas

in the same tree are identical. There are three trees in total and the associated dependence param-

eters in the copulas are denoted by ζ = (ζ1, ζ2, ζ3). The marginal distribution of Yit is specified by

(1) with

logit(pit) = β0 + β1X1,it + β2X2,i,

µit = γ0 + γ1X1,it + γ2X2,i.

Here, X1t is time-varying and X2 is time constant. The time-varying variable is generated inde-

pendently over time, and both covariates are generated independently across subjects. To allow for

both continuous and discrete predictors, we further assumeX1t ∼ N(0, 1) andX2 ∼ Bernoulli(0.4).

The scale and shape parameters in the GB2 distribution mimic those from the total claim model
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and are selected to generate a right skewed and heavy tailed distribution. In particular, the second

moment of GB2 does not even exist with the specified parameters.

We consider three scenarios corresponding to different levels of dependence that we quantify

using Kendall’s tau. In the case of weak dependence, Kendall’s taus are set to be 0.3, 0.2, and

0.1 for the first, second, and third trees, respectively. They are 0.6, 0.4, and 0.2 for the case of

moderate dependence, and 0.9, 0.6, and 0.3 for the case of strong dependence. It is sensible to

specify a decreasing pattern of dependence because the conditioning set contains more information

when one moves from lower to higher trees. The parameters in the bivariate copulas are specified

to match the Kendall’s tau. Furthermore, the parameters in the marginal regressions are specified

to mimic the percentage of zeros and the heavy tails in the insurance claim data. The detailed

algorithm for generating data from the proposed model is provided in Appendix A.2.

A.4.1 Parameter Estimation

With the simulated data, we estimate the true model using both the IFM and the joint MLE.

Results are summarized in Tables 11, 12, and 13 for scenarios of low, medium, and high dependence,

respectively. For each case, we consider different sample sizes (number of policyholders) and present

the results for n = 500 and n = 1000. The reported results are based on 500 replications.

Within each table, we examine the point estimate and the associated uncertainty. We first

report the mean estimate and the relative bias for all model parameters. The average estimates

are close to the true parameters, which is consistent with the associated small relative bias. Not

surprisingly, increasing sample size reduces the estimation bias that is expected to shrink to zero

when the sample size is large enough. Next, we examine the estimation uncertainty. Relevant

quantities reported in the tables are the average standard error and the nominal standard deviation

for each parameter. In each replication, the standard error is calculated based on the Godambe

matrix and the nominal standard deviation is derived from the replicated point estimates. The two

statistics are comparable, indicating the accuracy of the uncertainty estimates. An examination of

the relation between the standard errors under different sample sizes confirms the
√
n convergence

rate. One notices the relatively large bias and uncertainty in the shape parameters of the GB2

distribution. This is due to the long tails of the distribution. Note that the second moment does

not even exist for the GB2 distribution used in the simulation.

The effect of dependence on parameter estimation is demonstrated through comparisons across

tables. As anticipated, higher dependence results in larger bias and larger standard error. This is

because the effective sample size is smaller when the dependence is stronger. It is also noted that

such effect is not linear in that the difference in estimates under small and large sample sizes is

more pronounced in the scenario of strong dependence than the weak dependence.

Finally, when comparing the estimation of the IFM with the joint MLE, one notes that the two

estimating methods produce very consistent results in terms of bias and uncertainty for low and

medium dependence cases. The difference between the two methods becomes more noticeable in

the high dependence scenario, especially in the dependence parameter. However, such differences
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Table 11: Simulation under low dependence (τ = 0.3, 0.2, 0.1)

IFM Joint MLE
Est. Rel.Bias S.E. Nom.SD Est. Rel.Bias S.E. Nom.SD

n = 500
β0 = 2 1.998 -0.001 0.093 0.100 2.000 0.000 0.101 0.100
β1 = −1 -1.007 0.007 0.067 0.069 -1.009 0.009 0.065 0.065
β2 = −2 -2.010 0.005 0.121 0.149 -2.012 0.006 0.142 0.147
γ0 = 5 4.952 -0.010 0.316 0.423 4.949 -0.010 0.323 0.445
γ1 = 1 1.002 0.002 0.059 0.061 1.002 0.002 0.058 0.058
γ2 = −1 -0.993 -0.007 0.117 0.124 -0.993 -0.007 0.119 0.122
σ = 0.8 0.861 0.076 0.297 0.324 0.864 0.080 0.308 0.335
κ1 = 1.2 1.597 0.331 1.255 2.232 1.634 0.362 1.389 2.559
κ2 = 1 1.206 0.206 0.687 0.794 1.218 0.218 0.771 0.880
ζ1 = 1.77 1.763 -0.005 0.132 0.137 1.767 -0.003 0.139 0.137
ζ2 = 1.44 1.435 -0.006 0.121 0.124 1.437 -0.005 0.123 0.125
ζ3 = 1.19 1.202 0.006 0.144 0.142 1.202 0.006 0.144 0.143

n = 1000
β0 = 2 2.007 0.004 0.066 0.068 2.008 0.004 0.071 0.068
β1 = −1 -1.003 0.003 0.048 0.049 -1.005 0.005 0.046 0.047
β2 = −2 -2.009 0.005 0.086 0.101 -2.011 0.005 0.101 0.099
γ0 = 5 4.968 -0.006 0.178 0.178 4.968 -0.006 0.177 0.177
γ1 = 1 1.001 0.001 0.042 0.043 1.001 0.001 0.041 0.041
γ2 = −1 -0.998 -0.002 0.083 0.087 -0.998 -0.002 0.085 0.086
σ = 0.8 0.839 0.049 0.181 0.191 0.839 0.049 0.181 0.191
κ1 = 1.2 1.355 0.129 0.480 0.532 1.355 0.129 0.479 0.532
κ2 = 1 1.097 0.097 0.351 0.376 1.097 0.097 0.351 0.376
ζ1 = 1.77 1.770 -0.001 0.094 0.102 1.771 -0.001 0.098 0.101
ζ2 = 1.44 1.442 -0.001 0.086 0.090 1.442 -0.001 0.087 0.090
ζ3 = 1.19 1.199 0.004 0.100 0.099 1.199 0.004 0.101 0.099
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Table 12: Simulation under medium dependence (τ = 0.6, 0.4, 0.2)

IFM Joint MLE
Est. Rel.Bias S.E. Nom.SD Est. Rel.Bias S.E. Nom.SD

n = 500
β0 = 2 1.997 -0.002 0.093 0.116 1.999 -0.001 0.112 0.110
β1 = −1 -1.007 0.007 0.067 0.073 -1.008 0.008 0.059 0.058
β2 = −2 -2.007 0.003 0.121 0.174 -2.011 0.005 0.154 0.158
γ0 = 5 4.932 -0.014 0.319 0.405 4.938 -0.012 0.304 0.353
γ1 = 1 1.004 0.004 0.059 0.062 1.003 0.003 0.049 0.049
γ2 = −1 -0.983 -0.017 0.117 0.136 -0.985 -0.015 0.120 0.126
σ = 0.8 0.866 0.083 0.302 0.339 0.865 0.082 0.299 0.325
κ1 = 1.2 1.607 0.339 1.324 2.234 1.564 0.304 1.167 1.710
κ2 = 1 1.221 0.221 0.712 0.866 1.217 0.217 0.713 0.860
ζ1 = 3.83 3.787 -0.010 0.260 0.315 3.815 -0.003 0.313 0.306
ζ2 = 2.22 2.209 -0.004 0.176 0.187 2.222 0.001 0.182 0.188
ζ3 = 1.44 1.458 0.010 0.168 0.174 1.462 0.013 0.170 0.179

n = 1000
β0 = 2 2.005 0.003 0.066 0.079 2.006 0.003 0.079 0.075
β1 = −1 -1.001 0.001 0.048 0.051 -1.003 0.003 0.042 0.042
β2 = −2 -2.007 0.004 0.086 0.117 -2.005 0.003 0.109 0.105
γ0 = 5 4.978 -0.004 0.172 0.177 4.981 -0.004 0.169 0.166
γ1 = 1 1.003 0.003 0.042 0.043 1.003 0.003 0.035 0.036
γ2 = −1 -0.997 -0.003 0.083 0.092 -0.997 -0.003 0.085 0.086
σ = 0.8 0.821 0.026 0.175 0.169 0.820 0.025 0.173 0.165
κ1 = 1.2 1.297 0.081 0.447 0.463 1.291 0.076 0.436 0.437
κ2 = 1 1.061 0.061 0.332 0.327 1.059 0.059 0.327 0.319
ζ1 = 3.83 3.820 -0.002 0.186 0.243 3.834 0.002 0.223 0.229
ζ2 = 2.22 2.222 0.001 0.125 0.135 2.228 0.004 0.129 0.135
ζ3 = 1.44 1.454 0.007 0.118 0.123 1.456 0.009 0.119 0.124
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Table 13: Simulation under high dependence (τ = 0.9, 0.6, 0.3)

IFM Joint MLE
Est. Rel.Bias S.E. Nom.SD Est. Rel.Bias S.E. Nom.SD

n = 500
β0 = 2 2.007 0.003 0.093 0.149 2.002 0.001 0.108 0.108
β1 = −1 -1.012 0.012 0.068 0.082 -1.008 0.008 0.043 0.044
β2 = −2 -2.016 0.008 0.122 0.205 -2.011 0.005 0.128 0.133
γ0 = 5 4.942 -0.012 0.347 0.395 4.962 -0.008 0.216 0.222
γ1 = 1 1.008 0.008 0.059 0.064 1.003 0.003 0.025 0.025
γ2 = −1 -0.976 -0.024 0.118 0.161 -0.988 -0.012 0.092 0.098
σ = 0.8 0.906 0.132 0.331 0.372 0.871 0.088 0.220 0.224
κ1 = 1.2 1.671 0.392 1.294 1.513 1.468 0.223 0.671 0.740
κ2 = 1 1.346 0.346 0.906 1.147 1.196 0.196 0.488 0.524
ζ1 = 18.74 17.643 -0.058 1.018 1.802 18.884 0.008 1.552 1.482
ζ2 = 3.83 3.599 -0.059 0.277 0.335 3.837 0.003 0.294 0.307
ζ3 = 1.77 1.684 -0.050 0.188 0.206 1.800 0.016 0.205 0.210

n = 1000
β0 = 2 2.010 0.005 0.066 0.097 2.005 0.002 0.076 0.073
β1 = −1 -1.003 0.003 0.048 0.054 -1.001 0.001 0.030 0.030
β2 = −2 -2.013 0.006 0.086 0.133 -2.004 0.002 0.090 0.084
γ0 = 5 4.972 -0.006 0.178 0.188 4.986 -0.003 0.130 0.127
γ1 = 1 1.001 0.001 0.042 0.049 1.001 0.001 0.018 0.018
γ2 = −1 -0.995 -0.005 0.083 0.109 -0.996 -0.004 0.065 0.062
σ = 0.8 0.836 0.045 0.181 0.206 0.818 0.022 0.134 0.139
κ1 = 1.2 1.348 0.123 0.480 0.562 1.276 0.064 0.348 0.364
κ2 = 1 1.100 0.100 0.354 0.418 1.052 0.052 0.264 0.282
ζ1 = 18.74 18.121 -0.033 0.733 1.262 18.822 0.004 1.091 1.045
ζ2 = 3.83 3.691 -0.035 0.200 0.245 3.831 0.001 0.208 0.215
ζ3 = 1.77 1.724 -0.027 0.137 0.148 1.801 0.016 0.144 0.148
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can eventually be washed out by increasing sample size. The practical implication is that the IFM

offers substantial computational efficiency without sacrificing the statistical efficiency, while one

should be cautious if the dependence is extremely high.

A.4.2 Copula Specification

The above simulation shows the advantage of using the IFM for estimation provided that the model

is correctly specified. This section provides guidance on how to correctly specify the bivariate

copulas in the D-vine. Clearly it is not practical to perform an exhaustive search especially when

the dimension is high or the candidate pool is large. Even for the current application where all

copulas in the same tree are assumed to be identical, an exhaustive search still requires a fair

amount of computation.

We explore the sequential approach that is proposed in Section 3.3. Specifically, we consider

in this experiment a pool of four candidate copulas, i.e. the Clayton, Frank, Gumbel, and the

survival Joe. This set of copulas is chosen so that one has the potential to capture different types

of dependence structure, such as tail dependence and asymmetric dependence. For instance, the

Frank copula implies a symmetric dependence, the Gumbel copula allows for upper tail dependence,

and the other two capture lower tail dependence. To visualize the differences in the dependence

structure implied by these candidates, we exhibit the elliptical contours of their densities in Figure

5. The low, medium, and high associations in the figure are defined by Kendall’s tau being 0.2, 0.5,

and 0.8 respectively. One noticeable observation from Figure 5 is that besides both the Clayton and

survival Joe copulas accommodate lower tail dependence, the entire dependence structures implied

by the two copulas are nearly indistinguishable. To recap, the data are generated from the mixed

D-vine where the survival Joe copula is used for all trees and identical copulas are used for each

tree. The marginals are from a two-component mixture model featured with a logit regression and

a GB2 regression.

In each replication, we use the sequential algorithm to specify the copula on a tree-by-tree basis.

For comparison, we also use an exhaustive search to specify the copula for all trees simultaneously.

Note that for this experiment, the computational complexity is 4 × 3 for the former case and 43

for the latter case. As a robustness check, we consider the three scenarios of different levels of

dependence that are examined in Section A.4.1. The corresponding coverage probabilities based on

500 replications are displayed in Tables 14, 15, and 16. The experiment is also implemented under

different sample sizes and the results are consistent.

First, the specification based on the sequential approach is comparable to the exhaustive search,

indicating that the cumulative bias from lower to higher trees are ignorable, at least in the low

dimension context. We stress that the sole purpose of this experiment is to justify the practical

value of the sequential specification algorithm for the mixed D-vines compared to the benchmark

of the joint specification. Model selection for regular vines is out of the scope of this study. Second,

both methods effectively distinguish the true copula from the Frank and Gumbel copulas. This is

attributed to the unique dependence structure of each copula as showed in Figure 5. As expected,
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Figure 5: Elliptical contour density plots of candidate copulas at low, medium, and high associa-
tions.
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Table 14: Coverage probability - low dependence

Clayton Frank Gumbel Survival Joe

Joint
T1 (τ = 0.3) 0.376 0.014 0.000 0.610
T2 (τ = 0.2) 0.328 0.046 0.002 0.624
T3 (τ = 0.1) 0.222 0.194 0.084 0.500

Sequential
T1 (τ = 0.3) 0.388 0.014 0.000 0.598
T2 (τ = 0.2) 0.338 0.044 0.002 0.616
T3 (τ = 0.1) 0.220 0.196 0.084 0.500

Table 15: Coverage probability - medium dependence

Clayton Frank Gumbel Survival Joe

Joint
T1 (τ = 0.6) 0.390 0.000 0.000 0.610
T2 (τ = 0.4) 0.338 0.000 0.000 0.662
T3 (τ = 0.2) 0.328 0.048 0.002 0.622

Sequential
T1 (τ = 0.6) 0.410 0.004 0.000 0.586
T2 (τ = 0.4) 0.328 0.000 0.000 0.672
T3 (τ = 0.2) 0.322 0.048 0.002 0.628

Table 16: Coverage probability - high dependence

Clayton Frank Gumbel Survival Joe

Joint
T1 (τ = 0.9) 0.538 0.060 0.000 0.402
T2 (τ = 0.6) 0.602 0.000 0.000 0.398
T3 (τ = 0.3) 0.502 0.024 0.000 0.474

Sequential
T1 (τ = 0.9) 0.548 0.040 0.000 0.412
T2 (τ = 0.6) 0.610 0.000 0.000 0.390
T3 (τ = 0.3) 0.498 0.028 0.000 0.474
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identification at extremely low and high dependence becomes more difficult. Specifically, in the

tree with τ = 0.1, both methods misspecify the Frank copula and the Gumbel copula at 20%

and 8% chance, respectively. The misspecification rate becomes ignorable when there is moderate

dependence, but signals a slight rebound at high dependence τ = 0.9. Third, neither approach

successfully distinguishes the true copula from the Clayton copula. We do not find this result

surprising considering the similarity in the contour plots of the Clayton and survival Joe copulas

on one hand, and the non-identifiability issue due to the discreteness in the marginals on the other

hand (see, for example, Genest and Nešlehová (2007)). Note that the contours of the two copulas

are almost identical in the high dependence case, which explains the low coverage probability of

the survival Joe in Table 16.
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